
2/19/13

1

Recurrences

David Kauchak
cs302

Spring 2013

Administrative
l  Assignment 1

l  Proof should tell a clear story
l  Proof by induction: follow the steps outlined in class

(see the notes)
l  Assignment 2?
l  Assignment 3 out today (start early!)
l  Latex?
l  My view on homework…

Divide and Conquer
Divide: Break the problem into smaller sub-problems

Conquer: Solve the sub-problems. Generally, this involves
waiting for the problem to be small enough that it is trivial to
solve (i.e. 1 or 2 items)

Combine: Given the results of the solved sub-problems,
combine them to generate a solution for the complete
problem

Divide and Conquer:
some thoughts
Often, the sub-problem is the same as the original problem

Dividing the problem in half frequently does the job

May have to get creative about how the data is split

Splitting tends to generate run times with log n in them

2/19/13

2

Divide and conquer
One approach:
-  Pretend like you have a working version of your

function, but it only works on smaller sub-
problems

-  If you split up the current problem in some way
(e.g. in half) and solved those sub-problems,
how could you then get the solution to the larger
problem?

Divide and Conquer: Sorting

How should we split the data?

What are the sub-problems we need to solve?

How do we combine the results from these sub-
problems?

MergeSort MergeSort: Merge
Assuming L and R are sorted already, merge
the two to create a single sorted array

2/19/13

3

Merge
R: 2 4 6 7 L: 1 3 5 8

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

2/19/13

4

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2

2/19/13

5

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4

2/19/13

6

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6

2/19/13

7

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7 8

Merge
Does the algorithm terminate?

2/19/13

8

Merge

Is it correct?
Loop invariant: At the end of each iteration of the for loop of
lines 4-10 the subarray B[1..k] contains the smallest k elements
from L and R in sorted order.

Merge

Is it correct?
Loop invariant: At the beginning of the for loop of lines 4-10 the
first k-1 elements of B are the smallest k-1 elements from L and
R in sorted order.

Merge

Running time?

Merge

Running time? Θ(n) - linear

2/19/13

9

MergeSort
Merge-Sort
Running time?

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data

C(n): cost of merging/combining the data

Merge-Sort
Running time?

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data - linear Θ(n)

C(n): cost of merging/combining the data – linear Θ(n)

Merge-Sort
Running time?

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Which is?

2/19/13

10

Merge-Sort
cn

T(n/2)

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/2)

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/4) T(n/4) T(n/4) T(n/4)

 cn/2 cn/2

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

2/19/13

11

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

cn

cn

cn

cn

cn

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

cn

cn

cn

cn

cn

Depth?

Merge-Sort
We can calculate the depth, by determining when the
recursion gets to down to a small problem size, e.g. 1

At each level, we divide by 2

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

Merge-Sort

Running time?
l  Each level costs cn
l  log n levels

cn log n = Θ(n log n)

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

2/19/13

12

Recurrence
A function that is defined with respect to itself on
smaller inputs

nnTnT +=)2/(2)(

nnTnT +=)4/(16)(

2)1(2)(nnTnT +−=

Why are we interested in
recurrences?
Computational cost of divide and conquer algorithms

l  a subproblems of size n/b
l  D(n) the cost of dividing the data
l  C(n) the cost of recombining the subproblem solutions

In general, the runtimes of most recursive algorithms
can be expressed as recurrences

)()()/()(nCnDbnaTnT ++=

The challenge
Recurrences are often easy to define because they
mimic the structure of the program

But… they do not directly express the
computational cost, i.e. n, n2, …

We want to remove self-recurrence and find a
more understandable form for the function

Three approaches
Substitution method: when you have a good
guess of the solution, prove that it’s correct

Recursion-tree method: If you don’t have a good
guess, the recursion tree can help. Then solve
with substitution method.

Master method: Provides solutions for
recurrences of the form:

)()/()(nfbnaTnT +=

2/19/13

13

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then constant amount of work

dnTnT +=)2/()(

Guesses?

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then constant amount of work
Similar to binary search:

dnTnT +=)2/()(

Guess: O(log2 n)

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Ideas?

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction!
-  Assume it’s true for smaller T(k),

i.e. k < n
-  prove that it’s then true for

current T(n)

2/19/13

14

Assume T(k) = O(log2 k) for all k < n
Show that T(n) = O(log2 n)

From our assumption, T(n/2) = O(log2 n):

From the definition of big-O: T(n/2) ≤ c log2(n/2)

dnTnT +=)2/()(

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

How do we now prove T(n) = O(log n)?

To prove that T(n) = O(log2 n) identify the appropriate
constants:

dnTnT +=)2/()(

dnTnT +=)2/()(
dnc +≤)2/(log2

≤ c log2 n− c log2 2+ d

≤ c log2 n− c+ d

nc 2log≤

if c ≥ d

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n

residual

from our inductive hypothesis

Base case?
For an inductive proof we need to show two things:

l  Assuming it’s true for k < n show it’s true for n
l  Show that it holds for some base case

What is the base case in our situation?

⎩
⎨
⎧

+

(1)Θ
=

otherwise)2/(
small is if

)(
dnT

n
nT

Guess the solution?
l  At each iteration, does a linear amount of work

(i.e. iterate over the data) and reduces the size by
one at each step

l  O(n2)

Assume T(k) = O(k2) for all k < n
l  again, this implies that T(n-1) ≤ c(n-1)2

Show that T(n) = O(n2), i.e. T(n) ≤ cn2

nnTnT +−=)1()(

2/19/13

15

nnTnT +−=)1()(
nnc +−≤ 2)1(

nnnc ++−=)12(2

nccncn ++−= 22

2cn≤

if

residual

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+−)12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for any
c ≥1 for n ≥1

from our inductive hypothesis

Guess the solution?
l  Recurses into 2 sub-problems that are half the

size and performs some operation on all the
elements

l  O(n log n)
What if we guess wrong, e.g. O(n2)?

Assume T(k) = O(k2) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)2

Show that T(n) = O(n2)

nnTnT +=)2/(2)(

nnTnT +=)2/(2)(
nnc +≤ 2)2/(2
ncn += 4/2 2

ncn += 22/1
)2/1(22 ncncn −−=

2cn≤

residual

if

0)2/1(2 ≤−− ncn
02/1 2 ≤+− ncn
2≥cn

overkill?

from our inductive hypothesis What if we guess wrong, e.g. O(n)?

Assume T(k) = O(k) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)

Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT +=)2/(2)(

cn≤
factor of n so we can
just roll it in?

2/19/13

16

What if we guess wrong, e.g. O(n)?

Assume T(k) = O(k) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)

Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT +=)2/(2)(

cn≤
factor of n so we can
just roll it in?

Must prove the
exact form!

cn+n ≤ cn ??

Prove T(n) = O(n log2 n)
Assume T(k) = O(k log2 k) for all k < n

l  again, this implies that T(k) = ck log2k
Show that T(n) = O(n log2 n)

nnTnT +=)2/(2)(
nncn +≤)2/log(2/2

nnTnT +=)2/(2)(

nncn +−≤)2log(log 22

ncnncn +−≤ 2log residual
ncn 2log≤

if cn ≥ n, c > 1

Changing variables

Guesses?
We can do a variable change: let m = log2 n
(or n = 2m)

Now, let S(m)=T(2m)

nnTnT log)(2)(+=

mTT mm +=)2(2)2(2/

mmSmS +=)2/(2)(

Changing variables

Guess?

S(m) = 2S(m / 2)+m

)log()(mmOmS =

)log()()2()(mmOmSTnT m ===

)loglog(log)(nnOnT =

substituting m=log n

2/19/13

17

Recursion Tree
Guessing the answer can be difficult

The recursion tree approach
l  Draw out the cost of the tree at each level of recursion
l  Sum up the cost of the levels of the tree

l  Find the cost of each level with respect to the depth
l  Figure out the depth of the tree
l  Figure out (or bound) the number of leaves

l  Verify your answer using the substitution method

2)4/(3)(nnTnT +=

cnnTnTnT ++=)3/2(2)3/()(

2)4/(3)(nnTnT +=

cn2

T(n/4) T(n/4) T(n/4)

cn2

cost

2)4/(3)(nnTnT +=

cn2 cn2

cost

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

⎟
⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT

3/16cn2

2)4/(3)(nnTnT +=

cn2 cn2

cost

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

3/16cn2

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc (3/16)2cn2

What is the cost at each level? 2

16
3 cn

d

⎟
⎠

⎞
⎜
⎝

⎛

2/19/13

18

What is the depth of the tree?
At each level, the size of the data is divided by 4

1
4

=d
n

0
4

log =⎟
⎠

⎞
⎜
⎝

⎛
d
n

04loglog =− dn

nd log4log =

nd 4log=

2)4/(3)(nnTnT +=

cn2

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

How many leaves are there?

)1(T

How many leaves?
How many leaves are there in a complete ternary
tree of depth d?

nd 4log33 =

Total cost

)3(
16
3...

16
3

16
3)(4log2

1
2

2
22 n

d

cncncncnnT Θ+⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛++=
−

)3(
16
3

4
4

log
1log

0

2 n
n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛= ∑
−

=

x
x

k
k

−
=∑

∞

= 1
1

0

let x = 3/16

)3(
16
3

4log

0

2 n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛< ∑
∞

=

)3(
)16/3(1

1
4log2 ncn Θ+

−
=

)3(
13
16

4log2 ncn Θ+= ?

2/19/13

19

Total cost)3(
13
16)(4log2 ncnnT Θ+=

nn 4log
44 3loglog 43 =

3loglog 444 n=
34log

4log4 n=
3log4n=

)(
13
16)(3log2 4ncnnT Θ+=

)()(2nOnT =

Verify solution using substitution

Assume T(k) = O(k2) for all k < n
Show that T(n) = O(n2)

Given that T(n/4) = O((n/4)2), then

T(n/4) ≤ c(n/4)2

2)4/(3)(nnTnT +=

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

To prove that Show that T(n) = O(n2) we need to identify
the appropriate constants:

2)4/(3)(nnTnT +=
22)4/(3 nnc +≤

2cn≤

if

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ cn2

2)4/(3)(nnTnT +=

22 16/3 ncn +=

13
16

≥c

Master Method
Provides solutions to the recurrences of the form:

)()/()(nfbnaTnT +=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

2/19/13

20

nnTnT +=)4/(16)(

 a =
 b =
f(n) =

16
4
n

abnlog
2

16log4

n
n

=

=

?)(is
?)(is

?)(is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(n2)

nnTnT 2)2/()(+=

 a =
 b =
f(n) =

1
2
2n

abnlog
0

1log2

n
n

=

=

?)(2 is
?)(2 is

?)(2 is

0

0

0

ε

ε

+

−

Ω=

Θ=

=

n
n
nO

n

n

n

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?
?1for 22 is 2/ <≤ cc nn

nnTnT 2)2/()(+=
)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(2n)

?1for 22 is 2/ <≤ cc nn

Let c = 1/2

nn 2)2/1(2 2/ ≤
nn 222 12/ −≤
12/ 22 −≤ nn

nnTnT +=)2/(2)(

 a =
 b =
f(n) =

2
2
n

abnlog
1

2log2

n
n

=

=

?)(is
?)(is

?)(is

1

1

1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2: Θ(n log n)

2/19/13

21

!)4/(16)(nnTnT +=

 a =
 b =
f(n) =

16
4
n!

abnlog
2

16log4

n
n

=

=

?)(! is
?)(! is

?)(! is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?
?1for 416 is <≤ ccn!)!(n/

!)4/(16)(nnTnT +=
)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(n!)
Let c = 1/2

?1for 416 is <≤ ccn!)!(n/

!2/1! ncn =
)!2/(n>

!2/1)!2/()!4/(16 nnn <≤

therefore,

nnTnT log)2/(2)(+=

 a =
 b =
f(n) =

2
logn

abnlog

n
n
n

=

=

=
2/1

2

2

2log

2log

?)(log is
?)(log is

?)(log is

2/1

2/1

2/1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ()

2

n

nnTnT +=)2/(4)(

 a =
 b =
f(n) =

4
2
n

abnlog
2

4log2

n
n

=

=

?)(is
?)(is

?)(is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(n2)

2/19/13

22

Recurrences

dnTnT +=)3/(2)(

nnTnT log)1()(+−=

nnTnT +=)7/(7)(

3)2/(8)(nnTnT +=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

