

Administrative

- Assignment 1
- Proof should tell a clear story
- Proof by induction: follow the steps outlined in class (see the notes)
- Assignment 2?
- Assignment 3 out today (start early!)
- Latex?
- My view on homework...

Divide and Conquer: some thoughts

Often, the sub-problem is the same as the original problem

Dividing the problem in half frequently does the job

May have to get creative about how the data is split

Splitting tends to generate run times with $\log n$ in them

Divide and conquer

One approach:

- Pretend like you have a working version of your function, but it only works on smaller subproblems
- If you split up the current problem in some way (e.g. in half) and solved those sub-problems, how could you then get the solution to the larger problem?
if length $[A]==1$
else
$q \leftarrow\lfloor$ length $[A] / 2\rfloor$
create arrays $L[1 . . q]$ and $R[q+1$.. length $[A]]$
copy $A[1 . . q]$ to L
copy $A[q+1$.. length $[A]]$ to R
$L S \leftarrow$ Merge-Sort (L)
$R S \leftarrow \operatorname{MERGE}-\operatorname{Sort}(\mathrm{R})$
return MERGE(LS, RS)

Merge-Sort (A)

MergeSort: Merge

Assuming L and R are sorted already, merge the two to create a single sorted array
$\operatorname{Merge}(L, R)$

$$
\begin{array}{ll}
1 & \text { create array B of length length }[L]+\text { length }[R] \\
2 & i \leftarrow 1 \\
3 & j \leftarrow 1 \\
4 & \text { for } k \leftarrow 1 \text { to length }[B] \\
5 & \\
6 & \text { if } j>\text { length }[R] \text { or }(i \leq \text { length }[L] \text { and } L[i] \leq R[j]) \\
7 & \\
8 & B[k] \leftarrow L[i] \\
9 & \\
10 & \\
11 & \text { else } \\
1 & \\
& \\
\text { return B } & B[k] \leftarrow i+1 \\
& \\
\hline
\end{array}
$$

Divide and Conquer: Sorting

How should we split the data?

What are the sub-problems we need to solve?

How do we combine the results from these subproblems?

Merge	$\because: \%$ $\because: 8$. $\because: 8$ $\because: \%$
$\mathrm{L}: 1358 \mathrm{R}: 2467$	
```\(\operatorname{Merge}(L, R)\) create array B of length length \([L]+\) length \([R]\) \(i \leftarrow 1\) \(j \leftarrow 1\) for \(k \leftarrow 1\) to length \([B]\) if \(j>\) length \([R]\) or \((i \leq \operatorname{length}[L]\) and \(L[i] \leq R[j])\) \(B[k] \leftarrow L[i]\) \(i \leftarrow i+1\) else \(B[k] \leftarrow R[j]\) \(j \leftarrow j+1\) return \(B\)```	


Merge	$\because: \%$ $\because: 8$. $\because: 8$. $\because: 8 \%$
L: 1358 R: 2467	
B:	
$\operatorname{Merge}(L . R)$	
1 create array B of length length $[4]+$ length $[R]$	
${ }_{5}^{4}$ for $k \leftarrow 1$ to length $[B]$ if $j>$ lenoth $[R]$ or $(i \leq l e n g t h[L]$ and $L[i]<R[j])$	
$7 \quad i \leftarrow i+1$	
8 9	
$10 \quad$ B $\quad \underset{j}{\text { ¢ }}$	
11 return B	







Merge	:
Does the algorithm terminate?	
$\operatorname{Merge}(L, R)$	
$\begin{aligned} & 1 \quad \text { create array B of length length }[L]+\text { length }[R] \\ & 2 \quad i \leftarrow 1 \end{aligned}$	
$3 \quad j \leftarrow 1$	
4 for $k \leftarrow 1$ to length $[B]$	
$5 \quad$ if $j>$ length $[R]$ or ( $i \leq l e n g t h[L]$ and $L[i] \leq R[j])$	
$6 \quad B[k] \leftarrow L[i]$	
$7 \quad i \leftarrow i+1$	
8 else	
$9 \quad B[k] \leftarrow R[j]$	
$10 \quad j \leftarrow j+1$	
11 return B	


Merge   Is it correct?   Loop invariant:	$\because: \%$ $\because: 8:$ $\because: 8$. $\vdots: \%$
```\(\operatorname{Merge}(L, R)\) create array B of length length \([L]+\) length \([R]\) \(i \leftarrow 1\) \(j \leftarrow 1\) for \(k \leftarrow 1\) to length \([B]\) if \(j>\) length \([R]\) or \((i \leq l e n g t h[L]\) and \(L[i] \leq R[j])\) \(B[k] \leftarrow L[i]\) \(i \leftarrow i+1\) else \(B[k] \leftarrow R[j]\) \(j \leftarrow j+1\) return B```	

Merge

Is it correct?
Loop invariant: At the beginning of the for loop of lines $4-10$ the first $k-1$ elements of B are the smallest k - 1 elements from L and R in sorted order.

```
```

Merge(L, R)

```
```

Merge(L, R)
create array B of length length[L]+ length[R]
create array B of length length[L]+ length[R]
i\leftarrow1
i\leftarrow1
j\leftarrow1
j\leftarrow1
for }k\leftarrow1\mathrm{ to length[B]
for }k\leftarrow1\mathrm{ to length[B]
if j> length[R] or (i\leqlength[L] and L[i]\leqR[j])
if j> length[R] or (i\leqlength[L] and L[i]\leqR[j])
B[k]}\leftarrowL[i
B[k]}\leftarrowL[i
else
else
i\leftarrowi+1
i\leftarrowi+1
B[k]}\leftarrowR[j
B[k]}\leftarrowR[j
j\leftarrowj+1
j\leftarrowj+1
return B

```
    return B
```

length $[L]$ and $L[i] \leq R[j])$
$i \leftarrow i+1$
$B[k] \leftarrow R[j]$
$j \leftarrow j+1$
return B

```


\section*{Merge}

Running time? \(\Theta(n)\) - linear
\(\because:\)
\(\because \because\)
:8\%
```

Merge(L, R)
create array B of length length[L]+ length[R]
i\leftarrow1
j}
for }k\leftarrow1\mathrm{ to length[B]
if j> length[R] or (i\leqlength[L] and L[i]\leqR[j])
B[k]}\leftarrowL[i
l}$$
\begin{array}{l}{B[k]\leftarrowL[\imath}\\{i\leftarrowi+1}
 else
 B[k]}\leftarrowR[j
 return B
```

Merge-Sort
Running time?
\(T(n)=\left\{\begin{array}{ll|} \\
2 T(n / 2)+D(n)+C(n) & \text { otherwise }\end{array}
$$\right.\)

$\quad$| $C(n):$ cost of splitting (dividing) the data |
| :--- |
| $C(n):$ cost of merging/combining the data |

Merge-Sort
Running time?
$T(n)=\left\{\begin{array}{cc|}c & \text { if } n \text { is small } \\ 2 T(n / 2)+D(n)+C(n) & \text { otherwise }\end{array}\right.$
$D(n):$ cost of splitting (dividing) the data - linear $\Theta(\mathrm{n})$
$C(n):$ cost of merging/combining the data - linear $\Theta(\mathrm{n})$

| Merge-Sort | :\%:\% |
| :---: | :---: |
| Running time? |  |
| $T(n)=\left\{\begin{array}{cc} c & \text { if } n \text { is small } \\ 2 T(n / 2)+c n & \text { otherwise } \end{array}\right.$ |  |
| Which is? |  |





| Merge-Sort <br> We can calculate the depth, by determining when the recursion gets to down to a small problem size, e.g. 1 |  |
| :---: | :---: |
| At each level, we divide by 2 $\begin{aligned} \frac{n}{2^{d}} & =1 \\ 2^{d} & =n \\ \log 2^{d} & =\log n \\ d \log 2 & =\log n \\ d & =\log _{2} n \end{aligned}$ |  |


| Merge-Sort $\quad T(n)=\left\{\begin{array}{cc}c & \begin{array}{c}\text { if } n \text { is small }\end{array} \\ 2 T(n / 2)+c n & \text { otherwise }\end{array}\right.$ |  |
| :---: | :---: |
| Running time? <br> - Each level costs cn <br> - $\log n$ levels <br> $c n \log n=\Theta(n \log n)$ |  |

## Recurrence

A function that is defined with respect to itself on smaller inputs

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \\
& T(n)=16 T(n / 4)+n \\
& T(n)=2 T(n-1)+n^{2}
\end{aligned}
$$

## Why are we interested in recurrences?

Computational cost of divide and conquer algorithms

$$
T(n)=a T(n / b)+D(n)+C(n)
$$

- a subproblems of size $n / b$
- $D(n)$ the cost of dividing the data
- $C(n)$ the cost of recombining the subproblem solutions

In general, the runtimes of most recursive algorithms can be expressed as recurrences

## The challenge

Recurrences are often easy to define because they mimic the structure of the program

But... they do not directly express the computational cost, i.e. $n, n^{2}, \ldots$

We want to remove self-recurrence and find a more understandable form for the function

## Three approaches

Substitution method: when you have a good guess of the solution, prove that it's correct

Recursion-tree method: If you don't have a good guess, the recursion tree can help. Then solve with substitution method.

Master method: Provides solutions for recurrences of the form:

$$
T(n)=a T(n / b)+f(n)
$$

| Substitution method |  |
| :--- | :--- |
| Guess the form of the solution |  |
| Then prove it's correct by induction |  |
| $\qquad T(n)=T(n / 2)+d$ |  |
| Halves the input then constant amount of work |  |
| Guesses? |  |

## Substitution method

Guess the form of the solution
Then prove it's correct by induction

$$
T(n)=T(n / 2)+d
$$

Halves the input then constant amount of work Similar to binary search:

Guess: $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

| Proof? |  |
| :---: | :---: |
| $T(n)=T(n / 2)+d=O\left(\log _{2} n\right) ?$ <br> Ideas? |  |


| Proof? |  |
| :---: | :---: |
| $T(n)=T(n / 2)+d=O\left(\log _{2} n\right) ?$ <br> Proof by induction! <br> - Assume it's true for smaller $T(k)$, i.e. $\mathrm{k}<\mathrm{n}$ <br> - prove that it's then true for current $T(n)$ |  |

$$
T(n)=T(n / 2)+d
$$

Assume $T(k)=O\left(\log _{2} k\right)$ for all $k<n$
Show that $T(n)=O\left(\log _{2} n\right)$

From our assumption, $T(n / 2)=O\left(\log _{2} n\right)$ :

$$
O(g(n))=\left\{\begin{array}{ll}
f(n): & \begin{array}{l}
\text { there exists positive constants } c \text { and } n \text { such that } \\
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
\end{array}
\end{array}\right\}
$$

From the definition of big-O: $T(n / 2) \leq c \log _{2}(n / 2)$

How do we now prove $T(n)=O(\log n)$ ?

$$
T(n)=T(n / 2)+d
$$

To prove that $T(n)=O\left(\log _{2} n\right)$ identify the appropriate constants:
$O(g(n))=\left\{\begin{array}{ll}f(n): & \begin{array}{l}\text { there exists positive constants } c \text { and } n \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$
i.e. some constant $c$ such that $T(n) \leq c \log _{2} n$
$T(n)=T(n / 2)+d$
$\leq c \log _{2}(n / 2)+d \quad$ from our inductive hypothesis
$\leq c \log _{2} n-c \log _{2} 2+d$
$\leq c \log _{2} n-c+d$ residual
$\leq c \log _{2} n$
if $c \geq d$


## Base case?

For an inductive proof we need to show two things:

$$
T(n)=T(n-1)+n
$$

Guess the solution?

- At each iteration, does a linear amount of work (i.e. iterate over the data) and reduces the size by one at each step
- $O\left(n^{2}\right)$

Assume $T(k)=O\left(k^{2}\right)$ for all $k<n$

- again, this implies that $T(n-1) \leq c(n-1)^{2}$

Show that $T(n)=O\left(n^{2}\right)$, i.e. $T(n) \leq c n^{2}$

| $\begin{aligned} & T(n)=T(n-1)+n \\ & \leq c(n-1)^{2}+n \quad \text { from our inductive hypothesis } \\ &=c\left(n^{2}-2 n+1\right)+n \\ &=c n^{2}-2 c n+c+n \\ & \leq c n^{2} \\ & \text { if } \quad-2 c n+c+n \leq 0 \\ &-2 c n+c \leq-n \\ & c(-2 n+1) \leq-n \\ & \qquad \geq \frac{n}{2 n-1} \\ & \text { which holdual for any } \quad c \geq \frac{1}{2-1 / n} \\ & c \geq 1 \text { for } \mathrm{n} \geq 1 \end{aligned}$ |  |
| :---: | :---: |


| $T(n)=2 T(n / 2)+n$ <br> Guess the solution? |  |
| :---: | :---: |
| - Recurses into 2 sub-problems that are half the size and performs some operation on all the elements <br> - $O(n \log n)$ <br> What if we guess wrong, e.g. $O\left(n^{2}\right)$ ? |  |
| Assume $T(k)=O\left(k^{2}\right)$ for all $k<n$ <br> - again, this implies that $T(n / 2) \leq c(n / 2)^{2}$ <br> Show that $T(n)=O\left(n^{2}\right)$ |  |

$T(n)=2 T(n / 2)+n$
$\leq 2 c(n / 2)^{2}+n$ from our inductive hypothesis
$=2 c n^{2} / 4+n$
$=1 / 2 c n^{2}+n$
$=c n^{2}-\left(1 / 2 c n^{2}-n\right)$ residual
$\leq \mathrm{cn}^{2}$
if

$$
\begin{aligned}
-\left(1 / 2 c n^{2}-n\right) & \leq 0 \\
-1 / 2 c n^{2}+n & \leq 0
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+n
$$

What if we guess wrong, e.g. $\mathrm{O}(n)$ ?

Assume $T(k)=O(k)$ for all $k<n$

- again, this implies that $T(n / 2) \leq c(n / 2)$

Show that $T(n)=O(n)$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2 c n / 2+n \\
& =c n+n \\
& \leq c n \\
\quad & \quad \text { factor of } n \text { so we can } \\
\quad & \\
&
\end{aligned}
$$

| $T(n)=2 T(n / 2)+n$ <br> What if we guess wrong, e.g. O(n)? | : $\because: 8 \mathrm{~B}$ |
| :---: | :---: |
| Assume $T(k)=O(k)$ for all $k<n$ <br> - again, this implies that $T(n / 2) \leq c(n / 2)$ <br> Show that $T(n)=O(n)$ |  |
| Must prove the |  |


| $T(n)=2 T(n / 2)+n$ <br> Prove $T(n)=O\left(n \log _{2} n\right)$ <br> Assume $T(k)=O\left(k \log _{2} k\right)$ for all $k<n$ <br> - again, this implies that $T(k)=c k \log _{2} k$ <br> Show that $T(n)=O\left(n \log _{2} n\right)$ $\begin{aligned} T(n) & =2 T(n / 2)+n \\ & \leq 2 c n / 2 \log (n / 2)+n \\ & \leq c n\left(\log _{2} n-\log _{2} 2\right)+n \\ & \left.\leq c n \log _{2} n-c n+n\right) \text { residual } \\ & \leq c n \log _{2} n \\ & \quad \text { if } c n \geq n, c>1 \end{aligned}$ |  |
| :---: | :---: |

## Changing variables

Guesses?
We can do a variable change: let $m=\log _{2} n$ (or $n=2^{m}$ )

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

Now, let $S(m)=T\left(2^{m}\right)$

$$
S(m)=2 S(m / 2)+m
$$

## Changing variables

$S(m)=2 S(m / 2)+m$
Guess? $\quad S(m)=O(m \log m)$

$$
T(n)=T\left(2^{m}\right)=S(m)=O(m \log m)
$$

substituting $m=\log n$
$T(n)=O(\log n \log \log n)$

## Recursion Tree

Guessing the answer can be difficult

$$
\begin{aligned}
& T(n)=3 T(n / 4)+n^{2} \\
& T(n)=T(n / 3)+2 T(2 n / 3)+c n
\end{aligned}
$$

The recursion tree approach

- Draw out the cost of the tree at each level of recursion
- Sum up the cost of the levels of the tree
- Find the cost of each level with respect to the depth
- Figure out the depth of the tree
- Figure out (or bound) the number of leaves
- Verify your answer using the substitution method




## How many leaves?

How many leaves are there in a complete ternary tree of depth $d$ ?

## Total cost



$$
T(n)=c n^{2}+\frac{3}{16} c n^{2}+\left(\frac{3}{16}\right)^{2} c n^{2}+\ldots+\left(\frac{3}{16}\right)^{d-1} c n^{2}+\Theta\left(3^{\log _{4} n}\right)
$$

$$
=c n^{2} \sum_{i=0}^{\log _{n} n-1}\left(\frac{3}{16}\right)^{i}+\Theta\left(3^{\log _{4} n}\right)
$$

$$
\begin{array}{lc}
<c n^{2} \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i}+\Theta\left(3^{\log _{4} n}\right) & \sum_{k-0}^{\infty} x^{k}=\frac{1}{1-x} \\
=\frac{1}{1-(3 / 16)} c n^{2}+\Theta\left(3^{\log _{4} n}\right) & \operatorname{let} \mathrm{x}=3 / 16
\end{array}
$$

$$
=\frac{16}{13} c n^{2}+\Theta\left(3^{\log _{g} n}\right) ?
$$

| $\text { Total cost } \quad T(n)=\frac{16}{13} c n^{2}+\Theta\left(3^{\log _{4} n}\right)$ |  |
| :---: | :---: |
| $\begin{aligned} 3^{\log _{4} n} & =4^{\log _{4} 3^{\log _{4} n}} \\ & =4^{\log _{4} n \log _{4} 3} \\ & =4^{\log _{4} n^{\log _{4} 3}} \\ & =n^{\log _{4} 3} \end{aligned}$ $T(n)=\frac{16}{13} c n^{2}+\Theta\left(n^{\log _{4} 3}\right)$ $T(n)=O\left(n^{2}\right)$ |  |

## Verify solution using substitution

$$
T(n)=3 T(n / 4)+n^{2}
$$

Assume $T(k)=O\left(k^{2}\right)$ for all $k<n$
Show that $T(n)=O\left(n^{2}\right)$

Given that $T(n / 4)=O\left((n / 4)^{2}\right)$, then

$$
O(g(n))=\left\{\begin{array}{ll}
f(n): & \begin{array}{l}
\text { there exists positive constants } c \text { and } n \text { such that } \\
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
\end{array}
\end{array}\right\}
$$

$T(n / 4) \leq c(n / 4)^{2}$

$$
T(n)=3 T(n / 4)+n^{2}
$$

To prove that Show that $T(n)=O\left(n^{2}\right)$ we need to identify the appropriate constants:
$O(g(n))=\left\{\begin{array}{ll}f(n): & \begin{array}{l}\text { there exists positive constants } c \text { and } n \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

## $\because \because:$

:०:
:日:
-0.
I
i.e. some constant $c$ such that $T(n) \leq c n^{2}$

$$
\begin{aligned}
& T(n)=3 T(n / 4)+n^{2} \\
& \leq 3 c(n / 4)^{2}+n^{2} \\
&=c n^{2} 3 / 16+n^{2} \\
& \leq c n^{2} \\
& \text { if }
\end{aligned}
$$

## Master Method

Provides solutions to the recurrences of the form:

$$
T(n)=a T(n / b)+f(n)
$$

if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$


| $\begin{aligned} & T(n)=T(n / 2)+2^{n} \\ & \text { if } f(n)=O\left(n^{\log _{\alpha-\varepsilon}}\right) \text { for } \varepsilon>0, \text { then } T(n)=\Theta\left(n^{\log _{g_{6}} a}\right) \\ & \text { if } f(n)=\Theta\left(n^{\log _{g_{6}} \alpha}\right) \text {, then } T(n)=\Theta\left(n^{\log _{6} a} \log n\right) \\ & \text { if } f(n)=\Omega\left(n^{\log _{a} \alpha \varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\ & \text { then } T(n)=\Theta(f(n)) \end{aligned}$ |  |
| :---: | :---: |
| $\begin{aligned} \mathrm{a} & =1 & n^{\log _{b} a} & =n^{\log _{2} 1} \\ \mathrm{~b} & =2 & & =n^{0} \end{aligned}$ |  |
| $\begin{array}{lr} \text { is } 2^{n}=O\left(n^{0-\varepsilon}\right) ? & \text { Case } 3 ? \\ \text { is } 2^{n}=\Theta\left(n^{0}\right) ? & \text { is } 2^{n / 2} \leq c 2^{n} \text { for } c<1 ? \\ \text { is } 2^{n}=\Omega\left(n^{0+\varepsilon}\right) ? & \end{array}$ |  |

## $T(n)=T(n / 2)+2^{n}$

 if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)=\Omega\left(n^{\log _{a} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$
is $2^{n / 2} \leq c 2^{n}$ for $c<1$ ?
Let $\mathrm{c}=1 / 2$
$2^{n / 2} \leq(1 / 2) 2^{n}$
$2^{n / 2} \leq 2^{-1} 2^{n} \quad \mathrm{~T}(n)=\Theta\left(2^{n}\right)$
$2^{n / 2} \leq 2^{n-1}$

$$
\text { if } f(n)=\Omega\left(n^{\log _{a} a+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1
$$

is $n=O\left(n^{1-\varepsilon}\right)$ ?
is $n=\Theta\left(n^{1}\right)$ ?
Case 2: $\Theta(n \log n)$
is $n=\Omega\left(n^{1+\varepsilon}\right)$ ?

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \\
& \text { then } T(n)=\Theta(f(n)) \\
& a=2 \\
& b=2 \\
& f(n)=n \\
& n^{\log _{b} a}=n^{\log _{2} 2} \\
& =n^{1}
\end{aligned}
$$



$$
\begin{aligned}
& T(n)=16 T(n / 4)+n! \\
& \text { if } f(n)=O\left(n^{\log _{\alpha} a-\varepsilon}\right) \text { for } \varepsilon>0, \text { then } T(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { if } f(n)=\Omega\left(n^{\log _{b} \alpha+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\
& \text { then } T(n)=\Theta(f(n))
\end{aligned}
$$

is $16(n / 4)!\leq c n!$ for $c<1$ ?

$$
\begin{aligned}
& \text { Let } \mathrm{c}=1 / 2 \\
& c n!=1 / 2 n!\quad \mathrm{T}(n)=\Theta(n!) \\
& >(n / 2)!
\end{aligned}
$$

therefore,
$16(n / 4)!\leq(n / 2)!<1 / 2 n!$

$$
\begin{aligned}
& T(n)=\sqrt{2} T(n / 2)+\log n \\
& \text { if } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \text { for } \varepsilon>0 \text {, then } T(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { if } f(n)=\Omega\left(n^{\log _{a} a+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\
& \text { then } T(n)=\Theta(f(n)) \\
& \mathrm{a}=\sqrt{2} \\
& n^{\log _{b} a}=n^{\log _{2} \sqrt{2}} \\
& \mathrm{~b}=2 \\
& =n^{\log _{2^{1 / 2}}} \\
& =\sqrt{n} \\
& \text { is } \log n=O\left(n^{1 / 2-\varepsilon}\right) \text { ? } \\
& \text { is } \log n=\Theta\left(n^{1 / 2}\right) \text { ? } \\
& \text { Case 1: } \Theta(\sqrt{n}) \\
& \text { is } \log n=\Omega\left(n^{1 / 2+\varepsilon}\right) \text { ? }
\end{aligned}
$$

$$
\text { if } f(n)=\Omega\left(n^{\log _{a} a+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1
$$

is $n=O\left(n^{2-\varepsilon}\right)$ ?
is $n=\Theta\left(n^{2}\right)$ ?
Case 1: $\Theta\left(n^{2}\right)$
is $n=\Omega\left(n^{2+\varepsilon}\right)$ ?

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n \\
& \text { then } T(n)=\Theta(f(n)) \\
& a=4 \\
& b=2 \\
& f(n)=n \\
& n^{\log _{g} a}=n^{\log _{2} 4} \\
& =n^{2}
\end{aligned}
$$

| Recurrences | :\%:\% |
| :---: | :---: |
| $T(n)=2 T(n / 3)+d \quad T(n)=7 T(n / 7)+n$ |  |
| if $f(n)=O\left(n^{\text {logesetes }}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\text {loges }}\right)$ |  |
|  |  |
|  |  |
| $T(n)=T(n-1)+\log n$ | $T(n)=8 T(n / 2)+n^{3}$ |

