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Recurrences 

David Kauchak  
cs302 

Spring 2013 

Administrative 
l  Assignment 1 

l  Proof should tell a clear story 
l  Proof by induction: follow the steps outlined in class 

(see the notes) 
l  Assignment 2? 
l  Assignment 3 out today (start early!) 
l  Latex? 
l  My view on homework… 

Divide and Conquer 
Divide:  Break the problem into smaller sub-problems 
 
Conquer: Solve the sub-problems.  Generally, this involves 
waiting for the problem to be small enough that it is trivial to 
solve (i.e. 1 or 2 items) 
 
Combine: Given the results of the solved sub-problems, 
combine them to generate a solution for the complete 
problem 

Divide and Conquer:  
some thoughts 
Often, the sub-problem is the same as the original problem 

Dividing the problem in half frequently does the job 

May have to get creative about how the data is split 

Splitting tends to generate run times with log n in them 
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Divide and conquer 
One approach:   
-  Pretend like you have a working version of your 

function, but it only works on smaller sub-
problems 

-  If you split up the current problem in some way 
(e.g. in half) and solved those sub-problems, 
how could you then get the solution to the larger 
problem? 

Divide and Conquer: Sorting 

How should we split the data? 
 
What are the sub-problems we need to solve? 
 
How do we combine the results from these sub-
problems? 

MergeSort MergeSort: Merge 
Assuming L and R are sorted already, merge  
the two to create a single sorted array 



2/19/13 

3 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4  
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5  

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 8 

Merge 
Does the algorithm terminate? 
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Merge 

Is it correct? 
Loop invariant: At the end of each iteration of the for loop of 
lines 4-10 the subarray B[1..k] contains the smallest k elements 
from L and R in sorted order. 

Merge 

Is it correct? 
Loop invariant: At the beginning of the for loop of lines 4-10 the 
first k-1 elements of B are the smallest k-1 elements from L and 
R in sorted order. 

Merge 

Running time? 

Merge 

Running time? Θ(n) - linear  
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MergeSort 
Merge-Sort 
Running time? 

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is  if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data 

C(n): cost of merging/combining the data 

Merge-Sort 
Running time? 

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is  if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data - linear Θ(n)  

C(n): cost of merging/combining the data – linear Θ(n)  

Merge-Sort 
Running time? 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

Which is? 
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Merge-Sort 
cn 

T(n/2) 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

T(n/2) 

Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

T(n/4) T(n/4) T(n/4) T(n/4) 

  cn/2   cn/2 

Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) 

Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

 cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8 …
 

 c   c   c   c   c           …       c   c   c   c   c   c 
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Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

 cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8 …
 

 c   c   c   c   c           …       c   c   c   c   c   c 

cn 

cn 

cn 

cn 

cn 

Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

 cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8 …
 

 c   c   c   c   c           …       c   c   c   c   c   c 

cn 

cn 

cn 

cn 

cn 

Depth? 

Merge-Sort 
We can calculate the depth, by determining when the 
recursion gets to down to a small problem size, e.g. 1 
 
At each level, we divide by 2 

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

Merge-Sort 

Running time? 
l  Each level costs cn 
l  log n levels 

cn log n = Θ(n log n ) 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT
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Recurrence 
A function that is defined with respect to itself on 
smaller inputs 

nnTnT += )2/(2)(

nnTnT += )4/(16)(

2)1(2)( nnTnT +−=

Why are we interested in 
recurrences? 
Computational cost of divide and conquer algorithms 

l  a subproblems of size n/b 
l  D(n) the cost of dividing the data 
l  C(n) the cost of recombining the subproblem solutions 

 
In general, the runtimes of most recursive algorithms 
can be expressed as recurrences 

)()()/()( nCnDbnaTnT ++=

The challenge 
Recurrences are often easy to define because they 
mimic the structure of the program 
 
But… they do not directly express the 
computational cost, i.e. n, n2, … 
 
We want to remove self-recurrence and find a 
more understandable form for the function 

Three approaches 
Substitution method: when you have a good 
guess of the solution, prove that it’s correct 

Recursion-tree method: If you don’t have a good 
guess, the recursion tree can help.  Then solve 
with substitution method. 

Master method: Provides solutions for 
recurrences of the form: 

)()/()( nfbnaTnT +=
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Substitution method 
Guess the form of the solution 
Then prove it’s correct by induction 
 
 
 
Halves the input then constant amount of work 

dnTnT += )2/()(

Guesses? 

Substitution method 
Guess the form of the solution 
Then prove it’s correct by induction 
 
 
 
Halves the input then constant amount of work 
Similar to binary search: 

dnTnT += )2/()(

Guess: O(log2 n) 

Proof? 

T (n) = T (n / 2)+ d =O(log2 n)?

Ideas? 

Proof? 

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction! 
-  Assume it’s true for smaller T(k), 

i.e. k < n 
-  prove that it’s then true for 

current T(n) 
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Assume T(k) = O(log2 k)  for all k < n 
Show that T(n) = O(log2 n) 

From our assumption, T(n/2) = O(log2 n): 

From the definition of big-O: T(n/2) ≤ c log2(n/2) 

dnTnT += )2/()(

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

How do we now prove T(n) = O(log n)? 

To prove that T(n) = O(log2 n) identify the appropriate 
constants: 

dnTnT += )2/()(

dnTnT += )2/()(
dnc +≤ )2/(log2

≤ c log2 n− c log2 2+ d

≤ c log2 n− c+ d

nc 2log≤

if c ≥ d 

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n 

residual 

from our inductive hypothesis 

Base case? 
For an inductive proof we need to show two things: 

l  Assuming it’s true for k < n show it’s true for n 
l  Show that it holds for some base case 

 
What is the base case in our situation? 

⎩
⎨
⎧

+

(1)Θ
=

otherwise)2/(
small is  if

)(
dnT

n
nT

Guess the solution? 
l  At each iteration, does a linear amount of work 

(i.e. iterate over the data) and reduces the size by 
one at each step 

l  O(n2) 

Assume T(k) = O(k2)  for all k < n 
l  again, this implies that T(n-1) ≤ c(n-1)2 

Show that T(n) = O(n2), i.e. T(n) ≤ cn2 

nnTnT +−= )1()(
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nnTnT +−= )1()(
nnc +−≤ 2)1(

nnnc ++−= )12( 2

nccncn ++−= 22

2cn≤

if 

residual 

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+− )12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for any 
c ≥1 for n ≥1 

from our inductive hypothesis 

Guess the solution? 
l  Recurses into 2 sub-problems that are half the 

size and performs some operation on all the 
elements 

l  O(n log n) 
What if we guess wrong, e.g. O(n2)? 

Assume T(k) = O(k2)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2)2 

Show that T(n) = O(n2) 

nnTnT += )2/(2)(

nnTnT += )2/(2)(
nnc +≤ 2)2/(2
ncn += 4/2 2

ncn += 22/1
)2/1( 22 ncncn −−=

2cn≤

residual 

if 

0)2/1( 2 ≤−− ncn
02/1 2 ≤+− ncn
2≥cn

overkill? 

from our inductive hypothesis What if we guess wrong, e.g. O(n)? 

Assume T(k) = O(k)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2) 

Show that T(n) = O(n) 

nnTnT += )2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT += )2/(2)(

cn≤
factor of n so we can 
just roll it in? 
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What if we guess wrong, e.g. O(n)? 

Assume T(k) = O(k)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2) 

Show that T(n) = O(n) 

nnTnT += )2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT += )2/(2)(

cn≤
factor of n so we can 
just roll it in? 

Must prove the 
exact form! 

cn+n ≤ cn ?? 

Prove T(n) = O(n log2 n) 
Assume T(k) = O(k log2 k)  for all k < n 

l  again, this implies that T(k) = ck log2k 
Show that T(n) = O(n log2 n) 

nnTnT += )2/(2)(
nncn +≤ )2/log(2/2

nnTnT += )2/(2)(

nncn +−≤ )2log(log 22

ncnncn +−≤ 2log residual 
ncn 2log≤

if cn ≥ n, c > 1 

Changing variables 

Guesses? 
We can do a variable change:  let m = log2 n  
(or n = 2m) 

Now, let S(m)=T(2m) 

nnTnT log)(2)( +=

mTT mm += )2(2)2( 2/

mmSmS += )2/(2)(

Changing variables 

Guess? 

S(m) = 2S(m / 2)+m

)log()( mmOmS =

)log()()2()( mmOmSTnT m ===

)loglog(log)( nnOnT =

substituting m=log n 
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Recursion Tree 
Guessing the answer can be difficult 

The recursion tree approach 
l  Draw out the cost of the tree at each level of recursion 
l  Sum up the cost of the levels of the tree 

l  Find the cost of each level with respect to the depth 
l  Figure out the depth of the tree 
l  Figure out (or bound) the number of leaves 

l  Verify your answer using the substitution method 

2)4/(3)( nnTnT +=

cnnTnTnT ++= )3/2(2)3/()(

2)4/(3)( nnTnT +=

cn2 

T(n/4 ) T(n/4 ) T(n/4 ) 

cn2 

cost 

2)4/(3)( nnTnT +=

cn2 cn2 

cost 

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

⎟
⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT

3/16cn2 

2)4/(3)( nnTnT +=

cn2 cn2 

cost 

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

3/16cn2 

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc (3/16)2cn2 

What is the cost at each level? 2

16
3 cn

d

⎟
⎠

⎞
⎜
⎝

⎛
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What is the depth of the tree? 
At each level, the size of the data is divided by 4 

1
4

=d
n

0
4

log =⎟
⎠

⎞
⎜
⎝

⎛
d
n

04loglog =− dn

nd log4log =

nd 4log=

2)4/(3)( nnTnT +=

cn2 

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

How many leaves are there? 

)1(T

How many leaves? 
How many leaves are there in a complete ternary 
tree of depth d? 

nd 4log33 =

Total cost 

)3(
16
3...

16
3

16
3)( 4log2

1
2

2
22 n

d

cncncncnnT Θ+⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛++=
−

)3(
16
3

4
4

log
1log

0

2 n
n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛= ∑
−

=

x
x

k
k

−
=∑

∞

= 1
1

0

let x = 3/16 

)3(
16
3

4log

0

2 n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛< ∑
∞

=

)3(
)16/3(1

1
4log2 ncn Θ+

−
=

)3(
13
16

4log2 ncn Θ+= ? 
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Total cost )3(
13
16)( 4log2 ncnnT Θ+=

nn 4log
44 3loglog 43 =

3loglog 444 n=
34log

4log4 n=
3log4n=

)(
13
16)( 3log2 4ncnnT Θ+=

)()( 2nOnT =

Verify solution using substitution 

Assume T(k) = O(k2)  for all k < n 
Show that T(n) = O(n2) 

Given that T(n/4) = O((n/4)2), then 

T(n/4) ≤ c(n/4)2 

2)4/(3)( nnTnT +=

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

To prove that Show that T(n) = O(n2) we need to identify 
the appropriate constants: 

2)4/(3)( nnTnT +=
22)4/(3 nnc +≤

2cn≤

if 

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ cn2 

2)4/(3)( nnTnT +=

22 16/3 ncn +=

13
16

≥c

Master Method 
Provides solutions to the recurrences of the form: 

)()/()( nfbnaTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=
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nnTnT += )4/(16)(

  a   =  
  b   = 
f(n) = 

16 
4 
n 

abnlog
2

16log4

n
n

=

=

?)( is
?)( is

?)( is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(n2)  

nnTnT 2)2/()( +=

  a   =  
  b   = 
f(n) = 

1 
2 
2n 

abnlog
0

1log2

n
n

=

=

?)(2 is
?)(2 is

?)(2 is

0

0

0

ε

ε

+

−

Ω=

Θ=

=

n
n
nO

n

n

n

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?  
?1for  22 is 2/ <≤ cc nn

nnTnT 2)2/()( +=
)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(2n)  

?1for  22 is 2/ <≤ cc nn

Let c = 1/2 

nn 2)2/1(2 2/ ≤
nn 222 12/ −≤
12/ 22 −≤ nn

nnTnT += )2/(2)(

  a   =  
  b   = 
f(n) = 

2 
2 
n 

abnlog
1

2log2

n
n

=

=

?)( is
?)( is

?)( is

1

1

1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2:  Θ(n log n)  
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!)4/(16)( nnTnT +=

  a   =  
  b   = 
f(n) = 

16 
4 
n! 

abnlog
2

16log4

n
n

=

=

?)(! is
?)(! is

?)(! is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?  
?1for  416 is <≤ ccn!)!(n/

!)4/(16)( nnTnT +=
)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(n!)  
Let c = 1/2 

?1for  416 is <≤ ccn!)!(n/

!2/1! ncn =
)!2/(n>

!2/1)!2/()!4/(16 nnn <≤

therefore, 

nnTnT log)2/(2)( +=

  a   =  
  b   = 
f(n) = 

2 
logn 

abnlog

n
n
n

=

=

=
2/1

2

2

2log

2log

?)(log is
?)(log is

?)(log is

2/1

2/1

2/1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(   )  

2

n

nnTnT += )2/(4)(

  a   =  
  b   = 
f(n) = 

4 
2 
n 

abnlog
2

4log2

n
n

=

=

?)( is
?)( is

?)( is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(n2)  
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Recurrences 

dnTnT += )3/(2)(

nnTnT log)1()( +−=

nnTnT += )7/(7)(

3)2/(8)( nnTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε


