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MAX FLOW 
CS302, Spring 2013                   David Kauchak 

Admin 

Max Power 

http://www.youtube.com/watch?v=vDA-SAwz2VQ 

Student networking 

You decide to create your own campus network: 
¤  You get three of your friends and string some network cables 

¤  Because of capacity (due to cable type, distance, computer, etc) you 
can only send a certain amount of data to each person 

¤  If edges denote capacity, what is the maximum throughput you can 
you send from S to T? 
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Student networking 
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¨  You decide to create your own campus network: 
¤  You get three of your friends and string some network cables 

¤  Because of capacity (due to cable type, distance, computer, etc) you 
can only send a certain amount of data to each person 

¤  If edges denote capacity, what is the maximum throughput you can 
you send from S to T? 

Another flow problem 
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How much water flow 
can we continually 
send from s to t? 

Another flow problem 
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Flow graph/networks 
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Flow network 
¤  directed, weighted graph (V, E) 
¤  positive edge weights indicating the “capacity” (generally, 

assume integers) 
¤  contains a single source s ∈ V with no incoming edges 
¤  contains a single sink/target t ∈ V with no outgoing edges 
¤  every vertex is on a path from s to t 
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Flow 

What are the constraints on flow in a network? 
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Flow 

in-flow = out-flow for every vertex (except s, t) 
 
flow along an edge cannot exceed the edge capacity 
 
flows are positive 
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Max flow problem 

Given a flow network: what is the maximum flow we 
can send from s to t that meet the flow constraints? 
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Applications? 

network flow 
¤ water, electricity, sewage, cellular… 
¤  traffic/transportation capacity 

 
bipartite matching 
 
sports elimination 
 
…  
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Max flow origins 

Rail networks of the Soviet Union in the 1950’s 
The US wanted to know how quickly the Soviet Union could get 
supplies through its rail network to its satellite states in Eastern 
Europe. 

In addition, the US wanted to know which rails it could destroy most 
easily to cut off the satellite states from the rest of the Soviet Union. 
 

These two problems are closely related, and that solving the max 
flow problem also solves the min cut problem of figuring out the 
cheapest way to cut off the Soviet Union from its satellites. 

Source:  lbackstrom, The Importance of Algorithms, at www.topcoder.com  

Algorithm ideas? 

graph algorithm? 
¤ BFS, DFS, shortest paths… 
¤ MST 

 
divide and conquer? 
 
greedy? 
 
dynamic programming? 
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Algorithm idea 
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send some flow down a path 
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Algorithm idea 
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Now what? 

Algorithm idea 
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reroute some of the flow 

Total flow? 

Algorithm idea 
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Algorithm idea 
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send some flow down a path 

Algorithm idea 
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send some flow down a path 

Algorithm idea 
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send some flow down a path 

Algorithm idea 
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reroute some of the flow 
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Algorithm idea 
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Are we done? 
Is this the best we can do? 

Cuts 

A cut is a partitioning of the vertices into two sets A and  
B = V-A 
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Flow across cuts 
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In flow graphs, we’re interested in cuts that separate s from t, 
that is s ∈ A and t ∈ B 

Flow across cuts 
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The flow “across” a cut is the total flow from nodes in A 
to nodes in B minus the total from from B to A 
 
 
 

What is the flow across this cut? 
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Flow across cuts 
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The flow “across” a cut is the total flow from nodes in A 
to nodes in B minus the total from from B to A 
 
 

10+10-6 = 14 

Flow across cuts 
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Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 

What do we know about the flow across the any such cut? 

Flow across cuts 
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Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 

The flow across ANY such cut is the same and is the current 
flow in the network 

Flow across cuts 
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Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 4+10 = 14 
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Flow across cuts 

S 

A 

B 

T 

10/10 

4/9 4/10 

4/4 

2 

C 

D 

6 

4/10 

10/10 

6/8 

Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 4+6+4 = 14 

Flow across cuts 
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Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 10+10-6 = 14 

Flow across cuts 
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Consider any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 
 
 

The flow across ANY such cut is the same and is the current 
flow in the network 

Why? Can you prove it? 

Flow across cuts 

The flow across ANY such cut is the same and is the current 
flow in the network 

Inductively? 

¨  every vertex is on a path from s to t 
¨  in-flow = out-flow for every vertex (except s, t) 

¨  flow along an edge cannot exceed the edge capacity 

¨  flows are positive 



4/25/13	  

10	  

Flow across cuts 

The flow across ANY such cut is the same and is the current 
flow in the network 

Base case: A = s 

-  Flow is total from from s to t: therefore total 
flow out of s should be the flow 

-  All flow from s gets to t 
-  every vertex is on a path from s to t 
-  in-flow = out-flow 

Flow across cuts 

The flow across ANY such cut is the same and is the current 
flow in the network 

Inductive case: Consider moving a node x from A to B 

Is the flow across the different partitions the same? 

x 

Flow across cuts 

The flow across ANY such cut is the same and is the current 
flow in the network 

Inductive case: Consider moving a node x from A to B 

x 

in-flow = out-flow 

flow = left-inflow(x) – left-outflow(x) flow = right-outflow(x) – right-inflow(x) 

left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x) 

left-inflow(x) - left-outflow(x) = right-outflow(x) – right-inflow(x) 

Capacity of a cut 
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The “capacity of a cut” is the maximum flow that we could 
send from nodes in A to nodes in B (i.e. across the cut) 

How do we calculate the capacity? 
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Capacity of a cut 
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The “capacity of a cut” is the maximum flow that we could 
send from nodes in A to nodes in B (i.e. across the cut) 

Capacity is the sum of the edges from A to B  

Why? 

Capacity of a cut 

The “capacity of a cut” is the maximum flow that we could 
send from nodes in A to nodes in B (i.e. across the cut) 

Capacity is the sum of the edges from A to B  

-  Any more and we would violate the edge capacity 
constraint 

-  Any less and it would not be maximal, since we 
could simply increase the flow 

Quick recap 

A cut is a partitioning of the vertices into two sets A and 
B = V-A 

For any cut where s ∈ A and t ∈ B, i.e. the cut partitions 
the source from the sink 

¤  the flow across any such cut is the same 
¤  the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from A to B 

Maximum flow 
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Are we done? 
Is this the best we can do? 

For any cut where s ∈ A and t ∈ B 
¤  the flow across the cut is the same 
¤  the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from A to B 
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Maximum flow 
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We can do no better than the minimum capacity cut!  

For any cut where s ∈ A and t ∈ B 
¤  the flow across the cut is the same 
¤  the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from A to B 

Maximum flow 
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What is the minimum capacity cut for this graph? 

Capacity = 10 + 4 

Is this the best we can do? 

Maximum flow 
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What is the minimum capacity cut for this graph? 

Capacity = 10 + 4 

flow = minimum capacity, so we can do no better 

Algorithm idea 
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send some flow down a path 

How do we determine the 
path to send flow down? 
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Algorithm idea 
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send some flow down a path 

Search for a path with 
remaining capacity from s to t 

Algorithm idea 
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reroute some of the flow 

How do we handle 
“rerouting” flow? 

Algorithm idea 
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During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow 

Algorithm idea 

S 

A 

B 

T 

10/10 

4/9 4/10 

4/4 

2 

C 

D 

6 

4/10 

10/10 

6/8 

During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow 

reroute some of the flow 
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The residual graph 

The residual graph Gf is constructed from G 
 
For each edge e in the original graph (G): 

¤  if flow(e) < capacity(e) 
n  introduce an edge in Gf with capacity = capacity(e)-flow(e) 
n  this represents the remaining flow we can still push 

¤  if flow(e) > 0 
n  introduce an edge in Gf in the opposite direction with 

capacity = flow(e) 
n  this represents the flow that we can reroute/reverse 

Algorithm idea 
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s to t in Gf 
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Algorithm idea 
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None exist… done! 

Algorithm idea 
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s to t in Gf 

Algorithm idea 
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Algorithm idea 

G 

Gf 

Find a path from 
s to t in Gf 
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Algorithm idea 
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Algorithm idea 

G 

Gf 

DONE! 
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Ford-Fulkerson 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 

      send as much flow along the path as possible 
      Gf = residualGraph(G) 
   return flow 

a simple path contains no 
repeated vertices 
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Ford-Fulkerson: is it correct? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

Does the function terminate? 
Every iteration increases the flow from s to t 

n Every path must start with s 
n The path has positive flow (or it wouldn’t exist) 
n The path is a simple path (so it cannot revisit s) 
n  conservation of flow 

Ford-Fulkerson: is it correct? 

Does the function terminate? 
¤ Every iteration increases the flow from s to t 
¤  the flow is bounded by the min-cut 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

Ford-Fulkerson: is it correct? 

When it terminates is it the maximum flow? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

Ford-Fulkerson: is it correct? 

When it terminates is it the maximum flow? 
Assume it didn’t 

¤  We know then that the flow < min-cut 

¤  therefore, the flow < capacity across EVERY cut 
¤  therefore, across each cut there must be a forward edge in Gf 

¤  thus, there must exist a path from s to t in Gf 

n  start at s (and A = s) 
n  repeat until t is found 

n  pick one node across the cut with a forward edge 
n  add this to the path 
n  add the node to A (for argument sake) 

¤  However, the algorithm would not have terminated… a contradiction 
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Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

-  traverse the graph 
-  at most add 2 edges 

for original edge 
-  O(V + E) 

Can we simplify this expression? 

Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

-  traverse the graph 
-  at most add 2 edges 

for original edge 
-  O(V + E) = O(E) 
-  (all nodes exists on 

paths exist from s to t) 

Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

-  BFS or DFS 
-  O(V + E) = O(E) 
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Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

-  max-flow! 
-  increases ever iteration 
-  integer capacities, so 

integer increases 

Can we bound the number of 
times the loop will execute? 

Ford-Fulkerson: runtime? 

Ford-Fulkerson(G, s, t) 
   flow = 0 for all edges 
   Gf = residualGraph(G) 
   while a simple path exists from s to t in Gf 
      send as much flow along path as possible 
      Gf = residualGraph(G) 
   return flow 
 

-  max-flow! 
-  increases ever iteration 
-  integer capacities, so 

integer increases 

Overall runtime? O(max-flow * E) 

O(max-flow * E) 

Can you construct a graph that could get this running time? 
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Hint: 

O(max-flow * E) 

Can you construct a graph that could get this running time? 
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O(max-flow * E) 

Can you construct a graph that could get this running time? 
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Can you construct a graph that could get this running time? 
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Can you construct a graph that could get this running time? 
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O(max-flow * E) 

Can you construct a graph that could get this running time? 
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Can you construct a graph that could get this running time? 

S 

A 

B 

T 

3/100 

3/100 3/100 

3/100 

0/1 

What is the problem here?  
Could we do better? 

Faster variants 

Edmunds-Karp 
¤ Select the shortest path (in number of edges) from s to t 

in Gf 
n How can we do this? 

n  use BFS for search 

¤ Running time: O(V E2) 
n avoids issues like the one we just saw 
n  see the book for the proof 
n or http://www.cs.cornell.edu/courses/CS4820/2011sp/

handouts/edmondskarp.pdf 

preflow-push (aka push-relabel) algorithms 
¤ O(V3) 

Other variations… 

http://en.wikipedia.org/wiki/Maximum_flow 

http://akira.ruc.dk/~keld/teaching/
algoritmedesign_f03/Artikler/08/Goldberg88.pdf 


