

Admin		

Max Power

http://www.youtube.com/watch?v=vDA-SAwz2VQ

Applications?

network flow
water, electricity, sewage, cellular...
traffic/transportation capacity

bipartite matching

sports elimination

•••

Max flow origins

Rail networks of the Soviet Union in the 1950's

The US wanted to know how quickly the Soviet Union could get supplies through its rail network to its satellite states in Eastern Europe.

In addition, the US wanted to know which rails it could destroy most easily to cut off the satellite states from the rest of the Soviet Union.

These two problems are closely related, and that solving the max flow problem also solves the min cut problem of figuring out the cheapest way to cut off the Soviet Union from its satellites.

Source: Ibackstrom, The Importance of Algorithms, at www.topcoder.com

Algorithm ideas? graph algorithm? BFS, DFS, shortest paths... MST divide and conquer? greedy? dynamic programming?

5

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Base case: A = s

- Flow is total from from s to t: therefore total flow out of s should be the flow
- All flow from s gets to t
 - every vertex is on a path from s to t
 - in-flow = out-flow

Flow across cuts The flow across ANY such cut is the same and is the current flow in the network Inductive case: Consider moving a node x from A to B

Is the flow across the different partitions the same?

Quick recap

A cut is a partitioning of the vertices into two sets A and B = V-A

For any cut where $s \in A$ and $t \in B,$ i.e. the cut partitions the source from the sink

- $\hfill\square$ the flow across any such cut is the same
- the maximum capacity (i.e. flow) across the cut is the sum of the capacities for edges from A to B

16

Ford-Fulkerson: is it correct?

Does the function terminate?

Every iteration increases the flow from s to t Every path must start with s

- Every pain must start with s
 The path has positive flow (or it wouldn't exist)
- The path is a simple path (so it cannot revisit s)
- conservation of flow

Ford-Fulkerson(G, s, t)

Ford-Fulkerson: is it correct?

Does the function terminate?

Every iteration increases the flow from s to t
 the flow is bounded by the min-cut

Ford-Fulkerson(G, s, t) flow = 0 for all edges G_t = residualGraph(G) while a simple path exists from s to t in G_t send as much flow along path as possible G_t = residualGraph(G) return flow

Ford-Fulkerson: is it correct?

When it terminates is it the maximum flow?

Ford-Fulkerson(G, s, t) flow = 0 for all edges $G_t = residualGraph(G)$ while a simple path exists from s to t in G_t send as much flow along path as possible $G_t = residualGraph(G)$ return flow

Ford-Fulkerson: is it correct? When it terminates is it the maximum flow? Assume it didn't We know then that the flow < min-cut therefore, the flow < capacity across EVERY cut therefore, across each cut there must be a forward edge in G_t thus, there must exist a path from s to t in G_t start at s (and A = s) repeat until t is found pick one node across the cut with a forward edge add the node to A (for argument sake) However, the algorithm would not have terminated... a contradiction

Ford-Fulkerson: runtime?

 $\begin{array}{l} \mbox{Ford-Fulkerson}(G, s, t) \\ \mbox{flow} = 0 \mbox{ for all edges} \\ G_f = residualGraph(G) \\ \mbox{while a simple path exists from s to t in } G_f \\ \mbox{ send as much flow along path as possible } \\ G_f = residualGraph(G) \\ \mbox{return flow} \end{array}$

Ford-Fulkerson: ru	ntime?
	Ford-Fulkerson: ru

F	ord-Fulkerson(G, s, t)	
	flow $= 0$ for all edges	
	G _f = residualGraph(G)	
	while a simple path exists t	from s to t in G _f
	send as much flow along	path as possible
	G _f = residualGraph(G)	
	return flow	Can we si

from s to t in G _f	for original edge
path as possible	- O(V + E)
Can we sir	nplify this expression?

- traverse the graph

at most add 2 edges

Ford-Fulkerson: runtime?

 $\begin{array}{l} \mbox{Ford-Fulkerson}(G, s, t) \\ \mbox{flow} = 0 \mbox{ for all edges} \\ \hline G_f = residualGraph(G) \\ \mbox{while a simple path exists from s to t in } G_f \\ \mbox{ send as much flow along path as possible} \\ \hline G_f = residualGraph(G) \\ \mbox{return flow} \end{array}$

traverse the graph
at most add 2 edges for original edge
O(V + E) = O(E)

 (all nodes exists on paths exist from s to t)

19

Faster variants		Oth	ner varia	tions	•••			
		Method	Complexity					
Edmunds-Karp		Linear programming		TA		COMPLETING ALCOMOUND FOR	THE MANNEN FLOW P	on rud
Select the shortest path (in number of edges) from s to t		Ford-Fulkerson algorithm	0(E maxi / 1)	Algorithm no.	Date	Discoverer	Running time	References
in G _f		Edmonds-Karp algorithm	O(VE ²)	1 196 2 197 3 197 4 197 5 197	1969 1970 1974	9 Edmonds and Karp 0 Dinic 4 Karzanov 7 Cherkasky Malhotra, Pramodh Kumar, and Mabeshwari	$O(nm^2)$ $O(n^2m)$ $O(n^3)$	[5] [4]
How can we do this? Use BES for search		Dinitz blocking flow algorithm	$O(V^{E}E)$		1977 1978		$O(n^2m^{1/2})$ $O(n^3)$	[3] [21]
Running time: O(V E ²)		General push- relabel maximum flow algorithm	O(1 ² E)	6 7 8	1978 1978 1980	Galil Galil and Naamad; Shiloach Sleator and Tarjan Shiloach and Vichkin	$O(n^{5/3}m^{2/3})$ $O(nm(\log n)^2)$ $O(nm(\log n)$ $O(n^{5/3})$	[11] [12, 25] [27, 28] [26]
 avoids issues like the one we just saw see the book for the proof 		Push-relabel algorithm with FIFO vertex selection rule	0(V ^A)	10 11 12 13	1982 1983 1984 1985 1986	Gabow Tarjan Goldberg Goldberg and Tarjan	$O(n^2)$ $O(nm \log U)$ $O(n^2)$ $O(n^2)$ $O(nm \log(n^2/m))$	[10] [31] [14] [16, 15]
or http://www.cs.cornell.edu/courses/CS4820/2011sp/		Dinitz blocking flow algorithm with dynamic trees	$O(VE \log(V))$	14 1986 Alruja and Orlin *Algorithm 13 is presented in this paper.			O(nm + n ³ log U) [1]	
handouts/edmondskarp.pdf		Push-relabel algorithm with dynamic trees	$O(VE \log(V^2/E))$	http://akira.ruc.dk/~keld/teaching/ algoritmedesign f03/Artikler/08/Goldberg88.pdf				
preflow-push (aka push-relabel) algorithms		Binary blocking flow algorithm ^[1]	$O(E\min(V^{2/3},\sqrt{E})\log V^2/E)\log U)$					
□ O(V ³)		MPM (Malhotra, Pramodh-Kumar and Maheshwari) alongithm	Q(V ⁰)				,	
	http:/	/en.wikip	edia.org/wiki/Maxir	num_flow				