

Loop invariant

Loop invariant: A statement about a loop that is true before the loop begins and after each iteration of the loop.

At the start of each iteration of the for loop of lines 1-7 the subarray $A[1 . . j-1]$ is the sorted version of the original elements of $A[1 . . j$ - 1]

```
Insertion-Sort( \(A\) )
for \(j \leftarrow 2\) to length \([A]\)
    current \(\leftarrow A[j]\)
    \(i \leftarrow j-1\)
    while \(i>0\) and \(A[i]>\) current
        \(A[i+1] \leftarrow A[i]\)
        \(i \leftarrow i-1\)
    \(A[i+1] \leftarrow\) current
```


Loop invariant

At the start of each iteration of the for loop of lines 1-7 the subarray A[1..j-1] is the sorted version of the original elements of $A[1 . . j$ - 1]

Proof by induction

- Base case: invariant is true before loop
- Inductive case: it is true after each iteration

$$
\begin{aligned}
& \text { Insertion-Sort }(A) \\
& 1 \\
& \begin{array}{lc}
\text { for } j \leftarrow 2 \text { to length }[A] \\
2 & \text { current } \leftarrow A[j] \\
3 & i \leftarrow j-1 \\
4 & \text { while } i>0 \text { and } A[i]>\text { current } \\
5 & A[i+1] \leftarrow A[i] \\
6 & i \leftarrow i-1 \\
7 & A[i+1] \leftarrow \text { current }
\end{array}
\end{aligned}
$$

Insertion-sort	: $\because: 8$
Insertion-Sort (A)	
1 for $j \leftarrow 2$ to length $[A]$	
$2 \quad$ current $\leftarrow A[j]$	
$3 \quad i \leftarrow j-1$	
$4 \quad$ while $i>0$ and $A[i]>$ current	
$5 \quad A[i+1] \leftarrow A[i]$	
$6 \quad i \leftarrow i-1$	
$7 \quad A[i+1] \leftarrow$ current	
How long will it take to run?	

Asymptotic notation

- How do you answer the question: "what is the running time of algorithm x ?"
- We need a way to talk about the computational cost of an algorithm that focuses on the essential parts and ignores irrelevant details
- You've seen some of this already:
- linear
- $n \log n$
- n^{2}

Asymptotic notation

For example...
$f_{1}(n)$ takes n^{2} steps
$f_{2}(n)$ takes $2 n+100$ steps
$f_{3}(n)$ takes $3 n+1$ steps

Which algorithm is better?
Is the difference between f_{2} and f_{3} important/ significant?

Runtime examples						$\left\lvert\, \begin{aligned} & \because \because: \\ & \because \because: \\ & \vdots\end{aligned}\right.$
	n	$n \log n$	n^{2}	n^{3}	2^{n}	n !
$n=10$	$<1 \mathrm{sec}$	4 sec				
$n=30$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<18 \mathrm{~min}$	10^{25} years
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	1 s	10^{17} years	very long
$n=1000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long
(adapted from [2], Table 2.1, pg. 34)						

Big O: Upper bound		
$O(g(n))$ is the set of functions:		
$f_{1}(x)=3 n^{2}$		
$O\left(n^{2}\right)=f_{2}(x)=1 / 2 n^{2}+100$		
$f_{3}(x)=n^{2}+5 n+40$		
$f_{4}(x)=6 n$		

Omega: Lower bound		
$\Omega(g(n))$ is the set of functions:		
$\Omega(g(n))= \begin{cases}f(n): \begin{array}{l} \text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq \operatorname{cg}(n) \leq f(n) \text { for all } n \geq n_{0} \end{array}\end{cases}$		
$f_{1}(x)=3 n^{2}$		
$\Omega\left(n^{2}\right)=f_{2}(x)=1 / 2 n^{2}+100$		
$f_{3}(x)=n^{2}+5 n+40$		
$f_{4}(x)=6 n^{3}$		

Theta: Upper and lower bound $\Theta(g(n))$ is the set of functions: $\Theta(g(n))= \begin{cases}f(n): & \begin{array}{l} \text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\ 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} \end{array}\end{cases}$

Theta: Upper and lower bound

$\Theta(g(n))$ is the set of functions:
$\Theta(g(n))= \begin{cases}f(n): \begin{array}{l}\text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\ 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\end{array}\end{cases}$

Note: A function is theta bounded iff it is big O bounded and Omega bounded

worst-case vs. best-case vs. average-case

Proving bounds: find constants that satisfy inequalities

Show that $5 n^{2}-15 n+100$ is $\Theta\left(n^{2}\right)$

Step 1: Prove $O\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \leq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \geq 5 n^{2}-15 n+100 \\
c & \geq 5-15 / n+100 / n^{2}
\end{aligned}
$$

Let $n_{0}=1$ and $c=5+100=105$.
$100 / n^{2}$ only get smaller as n increases and we ignore $-15 / n$ since it only varies between -15 and 0 situations, asymptotic notation is about bounding particular situations
worst-case: what is the worst the running time of the algorithm can be?
best-case: what is the best the running time of the algorithm can be?
average-case: given random data, what is the running time of the algorithm?

Don' t confuse this with O, Ω and Θ. The cases above are

Proving bounds

Step 2: Prove $\Omega\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \geq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \leq 5 n^{2}-15 n+100 \\
c & \leq 5-15 / n+100 / n^{2}
\end{aligned}
$$

Let $n_{0}=4$ and $c=5-15 / 4=1.25$ (or anything less than 1.25). $15 / \mathrm{n}$ is always decreasing and we ignore $100 / \mathrm{n}^{2}$ since it is always between 0 and 100

Disproving bounds Is $5 n^{2} O(n) ?$ $O(g(n))=\left\{\begin{array}{ll}f(n): & \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$ Assume it's true. That means there exists some c and n_{0} such that $5 n^{2} \leq c n$ for $n>n_{0}$ $5 n \leq c \quad$ contradiction!

Some rules of thumb	
Multiplicative constants can be omitted - $14 n^{2}$ becomes n^{2} - $7 \log n$ become $\log n$	
Lower order functions can be omitted - $n+5$ becomes n - $n^{2}+n$ becomes n^{2}	
n^{a} dominates n^{b} if $a>b$ - n^{2} dominates n, so $n^{2}+n$ becomes n^{2} - $n^{1.5}$ dominates $n^{1.4}$	

Some rules of thumb

Any polynomial dominates any logorithm

- n dominates $\log n$ or $\log \log n$
- n^{2} dominates $n \log n$
- $n^{1 / 2}$ dominates $\log n$

Do not omit lower order terms of different variables $\left(n^{2}+m\right)$ does no become n^{2}

```
an dominates }\mp@subsup{b}{}{n}\mathrm{ if }a>
    - }\mp@subsup{3}{}{n}\mathrm{ dominates }\mp@subsup{2}{}{n
\(a^{n}\) dominates \(b^{n}\) if \(a>b\)
- \(3^{n}\) dominates \(2^{n}\)
```

Any exponential dominates any polynomial

- 3^{n} dominates n^{5}
- 2^{n} dominates n^{c}

: \&:
 :O: :日:

 :8.Big 0
$n^{2}+n \log n+50$
$2^{n}-15 n^{2}+n^{3} \log n$
$n^{\log n}+n^{2}+15 n^{3}$
$n^{5}+n!+n^{n}$

Some examples

- $\mathrm{O}(1)$ - constant. Fixed amount of work, regardless of the input size
- add two 32 bit numbers
- determine if a number is even or odd
- sum the first 20 elements of an array
- delete an element from a doubly linked list
- O(log $n)$ - logarithmic. At each iteration, discards some portion of the input (i.e. half)
- binary search

Some examples

- $\mathrm{O}(n)$ - linear. Do a constant amount of work on each element of the input
- find an item in a linked list
- determine the largest element in an array
- O $(n \log n) \log$-linear. Divide and conquer algorithms with a linear amount of work to recombine
- Sort a list of number with MergeSort
- FFT

Some examples

- $\mathrm{O}\left(n^{2}\right)$ - quadratic. Double nested loops that iterate over the data
- Insertion sort
- $\mathrm{O}\left(2^{n}\right)$ - exponential
- Enumerate all possible subsets
- Traveling salesman using dynamic programming
- O(n!)
- Enumerate all permutations
- determinant of a matrix with expansion by minors

