

Is Dijkstra' s algorithm correct?

Invariant:

```
Dinktra(G,s
    1 for all v\inV
    dist[v]}\leftarrow
        prev[v]}\leftarrow\mathrm{ null
    dist[s]}\leftarrow
    Q\leftarrowMakeHeap(V
    while !Empty (Q)
        t\leftarrowExtractMin}(Q
        for all edges (u,v)\inE
        if dist[v]>\operatorname{dist}[u]+w(u,v)
            dist[v]}\leftarrow\operatorname{dist}[u]+w(u,v
            DecreaseKey (Q,v,dist[v]
            DECN[vEKEY (Q,v,dist[v]
            prev[v]}\leftarrow
```


Is Dijkstra' s algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v

- The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Running time?				$\because \because:$ $\because \because:$ $\because \because \%$ $\because \because \%$	
Depends on the heap implementation					
	1 MakeHeap	\|V	ExtractMin	\|티 DecreaseKey	Total
Array	$\mathrm{O}(\mathrm{VI})$	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$	O(IEE)	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$	
Bin heap	$\mathrm{O}(\mathrm{IV} \mid)$	$\mathrm{O}(\mathrm{IV}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\underline{\text { E }}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}((\mathrm{V}\|+\|\mathrm{E}\|) \log \|\mathrm{V}\|)$	
				$\mathrm{O}(\|\underline{\text { E }} \log \| \mathrm{VI})$	

Running time?					
Depends on the heap implementation					
	1 MakeHeap	\|V	ExtractMin	\|티 DecreaseKey	Total
Array	$\mathrm{O}(\mathrm{VV})$	$\mathrm{O}\left(\left.\mathrm{V}\right\|^{2}\right)$	$\mathrm{O}(\mathrm{EE} \mid)$	$\mathrm{O}\left(\left.\mathrm{V}\right\|^{2}\right)$	
Bin heap	$\mathrm{O}(\|\mathrm{V}\|)$	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V} \mid)$	O(\|E	$\log \|\mathrm{V}\|)$	$\begin{aligned} & \mathrm{O}(\|\mathrm{~V}\|+\|E\|) \log \|\mathrm{V}\|) \\ & \mathrm{O}(\|\mathrm{E}\| \log \|\mathrm{V}\|) \end{aligned}$
Is this an improvement? \quad If $\|\mathrm{E}\|<\|\mathrm{V}\|^{2} / \log \|\mathrm{V}\|$					

Running time?				$\left\lvert\, \begin{aligned} & \because: \% \\ & \because \% \% \\ & \vdots \% \% \\ & \vdots \% \%\end{aligned}\right.$	
Depends on the heap implementation					
	1 MakeHeap	\|V	ExtractMin	\|티 DecreaseKey	Total
Array	$\mathrm{O}(\mathrm{IVI})$	$\mathrm{O}\left(\left.\mathrm{V}\right\|^{2}\right)$	O(\|E)	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$
Bin heap	O(IVI)	$\mathrm{O}(\mathrm{lV}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\underline{\text { E } \mid ~} \log \|\mathrm{~V}\|)$	$\begin{aligned} & \mathrm{O}((\|\mathrm{~V}\|+\|\mathrm{E}\|) \log \|\mathrm{V}\|) \\ & \mathrm{O}(\|\mathrm{E}\| \log \|\mathrm{V}\|) \end{aligned}$	
Fib heap	$\mathrm{O}(\mathrm{VI})$	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V} \mid)$	O(\|E)	$\mathrm{O}(\mathrm{IV}\|\log \| \mathrm{V}\|+\|\mathrm{E}\|)$

Bounding the distance

Another invariant: For each vertex v, dist $[v]$ is an upper bound on the actual shortest distance

Bounding the distance

Another invariant: For each vertex v, dist[v$]$ is an upper bound on the actual shortest distance

- start off at ∞

```
    Dujestra( }G,s
    l for all v\inV
    dist[v]}\leftarrow
    prev[v]}\leftarrownul
    dist[s]}\leftharpoondown
    Q\leftarrowMakeHeap(V)
    while !Empty (Q)
    7 u\leftarrowExtractMin}(Q
        for all edges (u,v)\inE
            if dist[v]> dist [u]+w(u,v)
            dist[v]\leftarrow\operatorname{dist}[u]+w(u,v)
            DecreaseKey (Q,v,dist[v])
            prev[v]}\leftarrow
            Is this a valid invariant?
```


$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$	
dist[v] will be right if u is along the shortest path to v and dist[u] is correct	
What happens if we update all of the vertices with the above update?	
(s) $P_{1}-P_{2}-P_{3} \cdots \cdots$	

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

dist[v] will be right if u is along the shortest path to v and dist[u] is correct

What happens if we update all of the vertices with the above update?

$\quad \operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$
dist $[\mathrm{v}]$ will be right if u is along the shortest path to v
and dist[u] is correct
What happens if we update all of the vertices with
the above update?
correct
$\quad \operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$
dist $[\mathrm{v}]$ will be right if u is along the shortest path to v
and dist[u] is correct
Does the order that we update the vertices matter?
correct correct

$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

$\operatorname{dist}[\mathrm{v}]$ will be right if u is along the shortest path to v and
$\operatorname{dist}[\mathrm{u}]$ is correct
How many times do we have to do this for vertex p_{i} to have
the correct shortest path from s ?
i times

correct
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

$\operatorname{dist}[\mathrm{v}]$ will be right if u is along the shortest path to v and
$\operatorname{dist}[\mathrm{u}]$ is correct
How many times do we have to do this for vertex p_{i} to have
the correct shortest path from s ?
i times

correct
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

dist $[\mathrm{v}]$ will be right if u is along the shortest path to v and
$\operatorname{dist}[u]$ is correct
How many times do we have to do this for vertex p_{i} to have
the correct shortest path from s ?
i times

correct correct correct correct
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

dist $[\mathrm{v}]$ will be right if u is along the shortest path to v and
dist $[u]$ is correct
What is the longest (vertex-wise) the path from s to any
node v can be?
- $\mathrm{V} \mid-1$ edges/vertices

correct

Correctness of Bellman-Ford

Loop invariant: After iteration i, all vertices with shortest paths from s of length i edges or less have correct distances

```
Bellman-Ford(G,s)
1 for all v\inV
            dist[v]}\leftarrow
~rev[v]\leftarrownull
dist[s]}
for }i\leftarrow1\mathrm{ to }|V|-
    for all edges (u,v) \inE
            if dist[v]>\operatorname{dist}[u]+w(u,v)
                dist [v]}\leftarrow\operatorname{dist}[u]+w(u,v
                prev[v]}\leftarrow
9}\mathrm{ for all edges (u,v) if d st[v]> \
    if dist[v]> dist[u]+w(u,v)
    return false
```


Runtime of Bellman-Ford

```
Bellman-Ford(G,s)
    for all v\inV
    dist[v]}\leftarrow
    prev[v]}\leftarrow\mathrm{ null
    dist[s]}\leftarrow
    for }i\leftarrow1\mathrm{ to }|V|-
            for all edges (u,v) \inE
                if dist[v]>\operatorname{dist}[u]+w(u,v)
                dist [v]}\leftarrow\operatorname{dist}[u]+w(u,v
                prev[v]}\leftarrow
    for all edges (u,v) \inE
        if dist[v]>\operatorname{dist}[u]+w(u,v)
                return false
            O(|V| |E|)
```


Runtime of Bellman-Ford

```
Bellman-Ford(G,s)
    for all v\inV
dist[v]}\leftarrow
dist[s]
dist[s]}\leftarrow
for }i\leftarrow1\mathrm{ to }|V|-
            for all edges (u,v) \inE
                if dist [v]>\operatorname{dist}[u]+w(u,v)
                    dist [v]}\leftarrow\operatorname{dist}[u]+w(u,v
```



```
for all edges }(u,v)\in
        if dist[v]>\operatorname{dist}[u]+w(u,v)
                return false
```

Can you modify the algorithm to run
faster (in some circumstances)?

Single source shortest paths

$\because \because$
 $\because: \bullet^{\circ}$

All of the shortest path algorithms we've looked at today are call "single source shortest paths" algorithms

Why?

All pairs shortest paths		
Simple approach - Call Bellman-Ford \|V	times - $\mathrm{O}\left(\|\mathrm{V}\|^{2}\|\mathrm{E}\|\right)$	
Floyd-Warshall - $\Theta\left(\|\mathrm{V}\|^{3}\right)$		
Johnson's algorithm - $\mathrm{O}\left(\|\mathrm{V}\|^{2} \log \|\mathrm{~V}\|+\|\mathrm{V}\|\|\mathrm{E}\|\right)$		

Minimum spanning trees	
What is the lowest weight set of edges that connects all vertices of an undirected graph with positive weights	
Input: An undirected, positive weight graph, $\mathrm{G}=(\mathrm{V}, \mathrm{E})$	
Output: A tree $\mathrm{T}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ where $\mathrm{E}^{\prime} \subseteq \mathrm{E}$ that minimizes$\text { weight }(T)=\sum_{\in \in i^{\prime}} w_{e}$	

Applications?

Connectivity

- Networks (e.g. communications)
- Circuit design/wiring
hub/spoke models (e.g. flights, transportation)

Traveling salesman problem?

Minimum cut property

Minimum cut property

Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Minimum cut property

Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Using e instead of e', still connects the graph, but produces a tree with smaller weights

Kruskal's algorithm

Given a partition S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

```
Kruskal( \(G\) )
1 for all \(v \in V\)
\(\operatorname{MakeSet}(v)\)
\(T \leftarrow\}\)
sort the edges of \(E\) by weight
for all edges \((u, v) \in E\) in increasing order of weight
        if \(\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)\)
            add edge to \(T\)
            Union(Find-Set \((u)\), \(\operatorname{Find}-S e t(v))\)
```


Correctness of Kruskal's

:\%:。
 :\%i.

Never adds an edge that connects already connected vertices

Always adds lowest cost edge to connect two sets. By min cut property, that edge must be part of the MST

```
Kruskal(G)
for all v\inV
MakeSet(v)
T}\leftarrow{
sort the edges of E by weight
for all edges (u,v) \inE in increasing order of weight
        if Find-SEt }(u)\not==\operatorname{Find-SET}(v
            add edge to T
                Union(Find-SEt(u),Find-SEt(v))
```


Running time of Kruskal's

$\operatorname{Kruskal}(G)$

1 for all $v \in V$
2 MakeSet (v)
$3 \quad T \leftarrow\}$
4 sort the edges of E by weight
5 for all edges $(u, v) \in E$ in increasing order of weight
5 for all edges $(u, v) \in E$ in increasing order of weigh
$6 \quad$ if Find-Set $(u) \neq \operatorname{Find}-\operatorname{Set}(v)$
7
8
add edge to T
Union(Find-SEt $(u), \operatorname{Find}-\operatorname{Set}(v))$

Prim's algorithm	$\begin{aligned} & \because: \\ & \because: \% \\ & \because: \\ & : 8: \end{aligned}$
$\operatorname{Prim}(G, r)$	
1 for all $v \in V$	
$2 k e y[v] \leftarrow \infty$	
3 prev $[v] \leftarrow$ null	
4 key $[r] \leftarrow 0$	
$5 \mathrm{H} \leftarrow \mathrm{MakeHeap}(\mathrm{key}$)	
6 while ! Empty (H)	
$7 \quad u \leftarrow$ Extract-Min (H)	
8 visited $[u] \leftarrow$ true	
$9 \quad$ for each edge $(u, v) \in E$	
$10 \quad$ if !visited $[v]$ and $w(u, v)<\operatorname{key}(v)$	
11 Decrease-Key $(v, w(u, v))$	
$12 \mathrm{prev}[v] \leftarrow u$	

Prim's algorithm	$\because \because: \%$ $\because \because: \%$ $\because \because:$
$\operatorname{Prim}(G, r)$	

Prim's algorithm

Start at some root node and build out the MST by adding the lowest weighted edge at the frontier
$\operatorname{Prim}(G, r)$

```
1 for all \(v \in V\)
\(2 \quad \operatorname{key}[v] \leftarrow \infty\)
prev \([v] \leftarrow\) null
\(k e y[r] \leftarrow 0\)
    \(H \leftarrow \operatorname{MakeHeap}(k e y)\)
    while !Empty \((H)\)
\(7 \quad u \leftarrow\) Extract- \(\operatorname{Min}(H)\)
\begin{tabular}{|cc|}
\hline 8 & visited \([u] \leftarrow\) true \\
9 & for each edge \((u, v) \in E\) \\
10 & if !visited \([v]\) and \(w(u, v)<k e y(v)\) \\
11 & DECREASE-KEY \((v, w(u, v))\) \\
12 & prev \([v] \leftarrow u\)
\end{tabular}
```


| Correctness of Prim's? |
| :--- | :--- |
| Can we use the min-cut property? |
| - Given a partion S, let edge e be the minimum cost edge that |
| crosses the partition. Every minimum spanning tree contains |
| edge e. |\quad| Let S be the set of vertices visited so far |
| :--- |
| The only time we add a new edge is if it's the lowest weight |
| edge from S to V -S |

Running time of Prim's				:\%:* $\because: \%$ $\because \because:-~$		
Same as Dijksta's algorithm						
	1 MakeHeap	\|V	ExtractMin	\|E	DecreaseKey	Total
Array	$\mathrm{O}(\mathrm{VV})$	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$	$\mathrm{O}(\mathrm{EE} \mid)$	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$		
Bin heap	$\mathrm{O}(\mathrm{VV})$	$\mathrm{O}(\mathrm{IV}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\mathrm{EE}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{E}\|) \log \|\mathrm{V}\|)$		
				$\mathrm{O}(\mathrm{E}\|\log \| \mathrm{V} \mid$)		
Fib heap	$\mathrm{O}(\mathrm{VI})$	$\mathrm{O}(\mathrm{lV}\|\log \| \mathrm{V} \mid)$	O(IEI)	$\mathrm{O}(\mathrm{IV}\|\log \| \mathrm{V}\|+\| \mathrm{E})$		
Kruskal' s: $\mathrm{O}(\|\underline{E}\| \log \|E\|$)						

