

Terminology

Path - A path is a list of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$

Terminology

Path - A path is a list of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$
\{C, D\}

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same
not a cycle

Terminology

Connected - every pair of vertices is connected by a path

Terminology

Strongly connected (directed graphs) Every two vertices are reachable by a path
not strongly connected

Terminology

Strongly connected (directed graphs) Every two vertices are reachable by a path

When do we see graphs in real life problems?

- Transportation networks (flights, roads, etc.)
- Communication networks
- Web
- Social networks
- Circuit design
- Bayesian networks

Representing graphs	: $\because: \%$

Adjacency list vs. adjacency matrix

Adjacency list
Sparse graphs (e.g. web) Space efficient
Must traverse the adjacency list to discover is an edge exists

Adjacency matrix

Dense graphs
Constant time lookup to discover if an edge exists Simple to implement
For non-weighted graphs, only requires boolean matrix

Graph algorithms/questions

:!:。

- Graph traversal (BFS, DFS)
- Shortest path from a to b
- unweighted
- weighted positive weights
- negative/positive weights
- Minimum spanning trees
- Are all nodes in the graph connected?
- Is the graph bipartite?
- hw16 and hw17 ©

Breadth First Search (BFS) on Trees

```
TreeBFS(T)
Enqueue(Q,Root(T))
while !Empty (Q)
v}\leftarrow\operatorname{DEQuEuE}(Q
Visit(v)
for all c\inCHildren(v)
Enqueue(Q,c)
```

Enqueue(Q, Root(T))
while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeue}(Q)$
Visit (v)
for all $c \in \operatorname{Children}(v)$
$\operatorname{Enqueue}(Q, c)$

Q:

Tree BFS

```
TreeBFS(T)
    Enqueue(Q,Root(T))
    while !EmPTY(Q)
        v}\leftarrow\operatorname{Dequeue}(Q
            VISIT (v)
            for all c\inChildren(v)
                Enqueue( }Q,c
```

 :\%:。
 \(\because \because:-\)

Tree BFS

TreebFS(T)	
1	Enqueue(Q, $\operatorname{Root}(T)$)
2	while ! Empty (Q)
3	$v \leftarrow \operatorname{Dequeue}(Q)$
4	$\mathrm{V}_{\text {ISIT }}(v)$
5	for all $c \in \operatorname{Children}(v)$
6	Enqueve (Q, c)

Q: B, D, E

Tree BFS

TreebFS(T)
Enqueue(Q, Root (T)) while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeue}(Q)$
Visit (v)
for all $c \in \operatorname{Children}(v)$
Enqueue(Q, c)

Q: E, C, F
Frontier: the set of vertices that have been visited so far

Tree BFS

Does it visit all of the nodes?

TreebFS(T)
$1 \operatorname{Enqueue}(Q, \operatorname{Root}(T))$
2 while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeve}(Q)$
$v \leftarrow \operatorname{DEQU}$
$\operatorname{Visit}(v)$
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

Running time of Tree BFS

Adjacency list

- How many times does it visit each vertex?
- How many times is each edge traversed?
- $\mathrm{O}(|\mathrm{V}|+\mid$ ㅌ|)

Adjacency matrix

- For each vertex visited, how much work is done?
- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

TreebFS(T)
1 Enqueue $(Q, \operatorname{Root}(T))$
2 while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeue}(Q)$
Visit (v)
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

