

2

3

7

When do we see graphs in real life problems?

- Transportation networks (flights, roads, etc.)
- Communication networks
- Web
- Social networks
- Circuit design
- Bayesian networks

Graph algorithms/questions

- Graph traversal (BFS, DFS)
- Shortest path from a to b
 - unweighted
 - weighted positive weights
 - negative/positive weights
- Minimum spanning trees
- Are all nodes in the graph connected?
- Is the graph bipartite?
- hw16 and hw17 ©

Breadth First Search (BFS) on Trees

TREEBFS(T)

- 1 ENQUEUE(Q, ROOT(T))
- 2 while !Empty(Q)
- 4 5

6

for all $c \in \text{CHILDREN}(v)$ ENQUEUE(Q, c)

Runni	ng time of Tree BFS	
Adjacency How n O(V + Adjacency For ea O(V ²	y list many times does it visit each vertex? many times is each edge traversed? HEI) y matrix ach vertex visited, how much work is done?	I
	TREEBFS(T)	
	$ \begin{array}{ll} 1 & \operatorname{Enqueue}(Q,\operatorname{Root}(T)) \\ 2 & \operatorname{while} & \operatorname{!Empty}(Q) \\ 3 & v \leftarrow \operatorname{Dequeue}(Q) \\ 4 & \operatorname{Vistr}(v) \\ 5 & \operatorname{for} & \operatorname{al} c \in \operatorname{Children}(v) \\ 6 & \operatorname{Enqueue}(Q,c) \end{array} $	