4/11/13

Dynamic . HH
y . Admin
Programming
. ¢ No office hours tomorrow
continued e Assignments 14 AND 15 will be made
) available today

David Kauchak o assignment 15 will be programming a DP

cs302 algorithm, so look at this sooner than later
Spring 2013

Where did “dynamic programming” come from? Esz Longest increasing 55:

“I spent the Fall quarter (of 1950) at RAND. My first task
was to find a name for multistage decision processes.
“An

(. His face would suffuse,
violent if people used

You can imagine how he Richard Bellman On the Birth of
The RAND Cor- Dynamic Programming

Stuart Dreyfus
http://www.eng.tau.ac.il/~ami/cd/

ora Vhat title, wha ould T choose? In the first
place I was interested in planning, in decision making, in
thinking. But planning, is not a good word for vari -
d therefore (o use the word, “pro

.pdf

a that this was dyna

ind that is it's impos:

dynamic, in a pejorative “Try thinking of some com-

0r50/1526-5463-2002-50-01-0048

subsequence

Given a sequence of numbers X = x4, X,, ..., X,
find the longest increasing subsequence

(i1, ip, ..., i), that is a subsequence where
numbers in the sequence increase.

52863697

4/11/13

Longest increasing
subsequence

Given a sequence of numbers X = xq, X,, ...,

find the longest increasing subsequence

(iy, iy, ..., i), that is a subsequence where
numbers in the sequence increase.

5286 7

Xn

Step 1: Define the problem
with respect to subproblems

528636097
l

Two options:
Either 5 is in the
LIS or it's not

Step 1: Define the problem
with respect to subproblems

52863697

include 5]

5+LIS(8 6 369 7)

Step 1: Define the problem
with respect to subproblems

52863697

include 5]
5+LIS(8 6 36 9 7)
Y)

What is this function exactly?

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

4/11/13

Step 1: Define the problem
with respect to subproblems

52863697

include 5]

5+LIS(8 6 36 9 7)
o

What is this function exactly?
longestncreasing This would allow for the option of
sequenceof the sequences starting with 3 which
numbers are NOT valid!

Step 1: Define the problem
with respect to subproblems

52863697

include 5]
5+LIS(86 36 97)
Y)

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 5?

Step 1: Define the problem
with respect to subproblems

52863697
include 5 |

5+LIS (86 3697)

5+LIS(6 369 7)

5+LIS(6 9 7)

5+ LIS(9 7)

5+ LIS'(7)

Step 1: Define the problem
with respect to subproblems
52863697
don’t

include 5

LIS2 8 6 36 9 7)
Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS™?

4/11/13

Step 1: Define the problem
with respect to subproblems

LIS(X) = max{LIS'(i)}

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

And what is LIS’ defined as (recursively)?

Step 1: Define the problem
with respect to subproblems
LIS(X) = max{LIS'(i)}
Longest increasing sequence for X

is the longest increasing sequence
starting at any element

LiS'() = max {1+LIS'(X,)}

ii>land x;>x;

Longest increasing sequence starting at i

Step 2: build the solution from | £
the bottom up

LIS'()= max {l+LIS'(X,)}

LIS’
52863697

I

Step 2: build the solution from |
the bottom up

LIS'(i)= max {l+LIS'(X,)}
LIS :
52863697
l

4/11/13

Step 2: build the solution from | £
the bottom up

LIS'()= max {I+LIS'(X,)}

LIS’
52863697

I

Step 2: build the solution from | £
the bottom up

LIS'G)= max {1+LIS'(X,)}

LIS™:
52863697
l

Step 2: build the solution from | £
the bottom up

LIS'()= max {I1+LIS'(X,)}

LIS’
52863697

l

Step 2: build the solution from |
the bottom up

LIS'G)= max {1+LIS'(X,)}

LIS™:
52863697
l

4/11/13

Step 2: build the solution from | £
the bottom up

LIS'()= max {I+LIS'(X,)}

LIS’
52863697

I

Step 2: build the solution from | £
the bottom up

LIS'G)= max {1+LIS'(X,)}

LIS™:
52863697
l

Step 2: build the solution from | £
the bottom up

LIS'()= max {I1+LIS'(X,)}

LIS’
52863697

l

Step 2: build the solution from |
the bottom up

LIS'G)= max {1+LIS'(X,)}

LIS™:
52863697
l

4/11/13

the bottom up

Step 2: build the solution from | i

LIS'()= max {l+LIS'(X,)}

LIS’:3 4223211
2863697

— O o

Step 2: build the solution from | £
the bottom up

LIS'G)= max {1+LIS'(X,)}

LIS’: 3|4|2 2 3 2 1 1
52863697

LIS(X) = max{LIS'(i)}

the bottom up

Step 2: build the solution from | i

LIS'()= max {l+LIS'(X,)}

What does my data structure for
storing answers look like?

the bottom up

Step 2: build the solution from | i

LIS'G)= max {1+LIS'(X,)}

N/

1-D array: only one thing changes
for recursive calls, i

4/11/13

Step 2: build the solution from
the bottom up

LIS(X)
1 n < LENGTH(X)

2 create array lis with n entries

3 fori—mntol

4 max — 1

5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > maz
8 maz — 1+ lis[j]
9 lisli] — max

10 mazx — 0

11 fori—1lton

12 if lis[i] > max

13 mazx — lis[i]

14 return max

Step 2: build the solution from
the bottom up

LIS(X)

1 n+« LENGTH(X)

5 eres e i

3 fori—ntol start from the end (bottom)

E maxr — 1

5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > max

8 max — 1+ lis[j]
9 lisli] — max

10 maz — 0

11 fori—1lton

12 if lis[i] > max

13 max «— lis[i]
14 return max

Step 2: build the solution from
the bottom up

LIS(X)

1 n < LENGTH(X)

2 create array lis with n entries ‘LIS'(I‘) = max {1+LIS'(X,)}
g ii>land x,>x,
3 fori—mntol i

4 max — 1

5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > maz

8 maz — 1+ lis[j]

9 lis|i] — max

10 mazx — 0

11 fori—1lton

12 if lis[i] > max

13 mazx — lis[i]

14 return max

Step 2: build the solution from
the bottom up

LIS(X)
1 n+« LENGTH(X)

2 create array lis with n entries

3 fori—mntol

4 maz — 1

5 for j—i+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > maz

8 max — 1+ lis[j]

9 lisli] — max

10 maz — 0

11 fori—lton US(X) = maX{LIS'(i)}
12 if lis[i] > max i
13 max «— lis[i]

14 return max

4/11/13

Step 2: build the solution from
the bottom up

LIS(X)
1 n < LENGTH(X)
2 create array lis with n entries

3 fori—ntol

4 maz — 1 |
5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > mazx

8 maz — 1+ lis[j]
9 lisli] — max

10 mazx — 0

11 fori—1lton

2 itk mar initialization?
: mazx — lis[i]

14 return max

Running time?

LIS(X)

n <« LENGTH(X)

create array lis with n entries

fori—ntol 2
mazx — 1 e(n)

5 for j—i+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > max

8 mazx — 1+ lis[j]

9 lisli] < max

10 max —0

11 fori«— lton

12 if lis[i] > max

13 maz — lisli]

14 return max

Another solution

Can we use LCS to solve this problem?

52863697
LCS

23566789

Another solution

Can we use LCS to solve this problem?

52863697
LCS

23566789

4/11/13

Memoization

Sometimes it can be a challenge to write the function in a
bottom-up fashion

Memoization:
o Write the recursive function top-down
o Alter the function to check if we’ve already calculated the value
o If so, use the pre-calculate value
o If not, do the recursive call(s)

Memoized fibonacci

Fisonacci(n)
1 ifn=1lorn=2

2 return 1
3 else
4 return FioNacci(n — 1) + FiBoNaccl(n — 2)

FIBONACCI-MEMOIZED(n)

1 fib[l] — 1

2 fib[2] —1

3 fori—3ton

4 fibli] —

5 return FiB-LooKup(n)

FiB-Lookup(n)

1 if fib[n] <

2 return fib[n]

3 2« FiB-Lookupr(n — 1) + FiB-LooKup(n — 2)
4 x < fib[n]

5 fibln] — x

6 return fib[n]

Memoized fibonacci

FiBoNaccr(n)
1 ifn=1lorn=2

2 return 1
3 else
1 return FiBoNacci(n — 1) + FiBoNAccl(n — 2)

FIBONACCI-MEMOIZED(n)
1 fib[l] 1

2 fib2] 1

3 fori+3ton

4 fibli] + o

5 return FIB-LOOKUP(n)

F1B-LOOKUP(n)
1 if fib[n] < o0
2 return fib[n]

3 fib[n] « F1B-LOOKUP(n — 1) + F1B-LOOKUP(n — 2)
4 return fib[n]

Memoized fibonacci

FiBonacci(n)
1 ifn=1lorn=2

2 return 1
3 else
1 return FioNacci(n — 1) + FiBoNacci(n — 2)

FIBONACCI-MEMOIZED(n)

1 fib[l] — 1

2 fib[2] —1

3 fori—3ton

4 fibli] — o

5 return FiB-LOOKUP(n)

FiB-Lookup(n)

1 if fib[n] <

2 return fib[n]

3 2« FiB-Lookupr(n — 1) + FiB-LooKup(n — 2)
L if z < fibln]

5 fibln] — x

6 return fib[n]

Use « to denote
uncalculated

10

4/11/13

Memoized fibonacci

FiBoNacci(n)
1 ifn=1lorn=2

2 return 1
3 else
1 return FiBoNacci(n — 1) + FisoNaccl(n — 2)

What else could we use
besides an array?

F1BONACCI-MEMOIZED(n)
1 fib[l] 1

2 fib[2] —1

3 fori—3ton

4 fibli] — o

5 return FiB-LOOKUP(n)

Use « to denote
uncalculated

FiB-Lookup(n)

1 if fib[n] < o

2 return fib[n]

3 2« FiB-Lookup(n — 1) + FIB-LOOKUP(n — 2)
4 if » < fib[n]

5 fibln] — x
6 return fib[n]

Memoized fibonacci

FiBonacci(n)
1 ifn=1lorn=

2 return 1
3 else
1 return FiBoNacci(n — 1) + FiBoNacci(n — 2)

FIBONACCI-MEMOIZED(n)

1 fib[l] —1

2 fib[2] —1

3 fori—3ton

4 fibli] — o0

5 return FiB-LooKup(n)
FiB-Lookup(n)

1 if fib[n] < oo

2 return fib[n]

3 7 — FiB-Lookupr(n — I) + FIB-LOOKUP(n — 2)
4 if x < fib[n]

£ fibln] — x

6 return fib[n]

Check if we already
calculated the value

=

Memoized fibonacci

FiBoNacci(n)
1 ifn=1lorn=2

2 return 1
3 else
1 return FiBoNacci(n — 1) + FisoNaccl(n — 2)

F1BONACCI-MEMOIZED(n)
1 fib[l] 1

2 fib[2] —1

3 fori—3ton

4 fibli] — o

5 return FiB-LooKUP(n)

FiB-Lookup(n)

1 if fibn] < 0o

2 return fib[n]

‘3 2 — FIB-LOOKUP(n — 1) + FIB-LOOKUP(n — 2) ‘ calculate the value
4 if » < fib[n]

5 fibln] — x

6 return fib[n]

Memoized fibonacci

FiBonacci(n)

1 ifn=1lorn=
2 return 1

3 else

1 return FiBoNacci(n — 1) + FiBoNacci(n — 2)

FIBONACCI-MEMOIZED(n)
1 fib[l] —1

2 fib[2] —1

3 fori—3ton
4 fibli] — oo

5 return FiB-LooKup(n)

FiB-Lookup(n)

1 if fib[n] < oo

2 return fib[n]

3 =z« FiB-Lookupr(n — 1) + FIB-LOOKUP(n — 2)
4 i

store the value

5

1

4/11/13

Memoization

Pros
o Can be more intuitive to code/understand

o Can be memory savings if you don’ t need answers to
all subproblems

Cons
» Depending on implementation, larger overhead
because of recursion (though often the functions are
tail recursive)

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,

Insertion:

ABACED [X) ABACCED) DABACCED

Insert Insert
o ‘D’

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,
Deletion:

ABACED

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,

Deletion:

ABACED [X) BACED

Delete
N

12

4/11/13

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum

number of insertions, deletions and substitutions
required to transform string s, into string s,

Deletion:

=) BACE

Delete Delete
N D’

ABACED [X) BACED

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum

number of insertions, deletions and substitutions
required to transform string s, into string s,

Substitution:

) ABADES

Sub ‘S’ for ‘D’

ABACED [X) ABADED

Sub ‘D’ for ‘C’

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

Edit distance examples

Edit(Happy, Hilly)= 3

Operations:
Sub ‘a’ for ‘i’ Hippy
Sub ‘I" for ‘p” Hilpy
Sub ‘I’ for ‘p” Hilly

13

4/11/13

Edit distance examples Edit distance examples
Edit(Banana, Car)= 5 Edit(Simple, Apple) = 3
Operations: Operations:

Delete ‘B’ anana Delete ‘S’ imple
Delete ‘a’ nana Sub ‘A’ for ‘i’ Ample
Delete ‘n’ naa Sub ‘m’ for ‘p” Apple
Sub ‘C’ for ‘n” Caa
Sub ‘a’ for I Car

Edit distance Is edit distance symmetric?
that is, is Edit(s,, s,) = Edit(s,, $4)?

Edit(Simple, Apple) =? Edit(Apple, Simple)
Why might this be useful?
Why?

e sub ‘i’ for j —sub j for V'

o delete ‘i’ — insert i’

e insert i’ — delete ‘i’

14

4/11/13

Calculating edit distance : Calculating edit distance :
X=ABCBDAB X=ABCBDA?
l
Y=BDCABA Y=BDCAB?
l
|deas? After all of the operations, X needs
to equal Y
Calculating edit distance : Insert :
X=ABCBDA? X=ABCBDA?
l l
Y=BDCAB? Y=BDCABR)
l l
Operations: Insert
Delete
Substitute

15

4/11/13

Insert Delete
X=ABCBDA?| X=ABCBDA@
Edit [
Y=BDCABT Y=BDCAB?

l

Edit(X,Y) =1+ Edit(X,_,.Y,)

Delete Substition
X=ABCBDAP? X=ABCBDA?
Edit ll
Y=BDCAB? Y=BDCAB?

l

Edlt(Xﬂ Y) = 1+Edit(X],..n—l9}]1...m)

16

4/11/13

Substition Anything else?
X=ABCBDA]? X=ABCBDA?
Edit |
Y=BDCAB? Y=BDCAB?
l
Edit(X:Y)=1+Edit(X1.un-1’Yl.“m—1)
Equal : Equal :
X=ABCBDA? X=ABCBDA?
I Edit
Y=BDCAB? Y=BDCAB?

I

Edit(X, Y) = Edl-t(Xl.“n—l ’Yl...m—l)

17

4/11/13

00 o000
0o 00
o0 (L.
Ld L]
Combining results Combining results
. . 1+ Edit(X, .Y,) insertion
Insert: Edit(X,Y)=1+ Edlt(Xl_“n R Ylum_l) Edit(X,Y) = min. 1+ Edit(X, X,) deletion
Diff (x,,y,)+ Edit(X, .Y,) equal/substitution
. . _ . Epit(X.,Y)
Delete: Edit(X,Y) =1+ Edit(X, .Y, ,,) L e length(x]
2 n«— length[Y]
3 fori—0tom
substive: Edit(X,Y) =1+ Edit(X, .Y,) 5 torjetian
6 df0,j] — j
7 fori—1ltom
. . 8 for j— 1ton
Equal: Edit(X,Y) = Edlt()(1 4 m—l) 0 " i g] = min(L+ di = 1,3,
1+ dfi,j— 1],
mFF(.r;.J!/Jl +dli—1,5—-1])
10 return dfm,n]
00 00
00 00
o0 (L.
L d L]
Running time Variants

O(nm)

Epit(X.Y)

1 m « length[X]

2 n«— length[Y]

3 fori— Otom

4 d[i, 0] — i

5 forj«— 0ton

6 d0,j] —j

7 fori—1tom

8 for j— 1ton

9 dfi,j] = min(1+d[i — 1, j],

14d[i.j—1],

DIFF(2;.5) +d[i — 1.7 — 1])
10

return d[m, n|

e Only include insertions and deletions
e What does this do to substitutions?

e Include swaps, i.e. swapping two adjacent characters
counts as one edit

e Weight insertion, deletion and substitution differently

e Weight specific character insertion, deletion and
substitutions differently

e Length normalize the edit distance

18

4/11/13

Quick summary

e Step 1: Define the problem with respect to subproblems
o We did this for divide and conquer too. What's the difference?

« You can identify a candidate for dynamic programming if there is
overlap or repeated work in the subproblems being created

e Step 2: build the solution from the bottom up

o Build the solution such that the subproblems referenced by larger
problems are already solved

» Memoization is also an alternative

0-1 Knapsack problem

e 0-1 Knapsack — A thief robbing a store finds n items
worth v,, v,, .., v, dollars and weight
Wy, Wy, ..., W, pounds, where v, and w, are integers. The
thief can carry at most W pounds in the knapsack.
Which items should the thief take if he/she wants to
maximize value?

e Repetition is allowed, that is you can take multiple copies
of any item

K(w) = max{K(w-w)+v,}

19

