

Admin

- No office hours tomorrow
- Assignments 14 AND 15 will be made available today
- assignment 15 will be programming a DP algorithm, so look at this sooner than later

Where did "dynamic programming" come from?

Uncertained "dynamic programming the state of 1950) at RAND. My first task in the fast ansate for multisage dynamic process." The state of the st

Richard Bellman On the Birth of Dynamic Programming Stuart Dreyfus

http://www.eng.tau.ac.il/~ami/cd/ or50/1526-5463-2002-50-01-0048 .pdf

 $(i_1, i_2, ..., i_k)$, that is a subsequence where numbers in the sequence increase.

Longest increasing subsequence

Given a sequence of numbers $X = x_1, x_2, ..., x_n$ find the longest increasing *subsequence* $(i_1, i_2, ..., i_k)$, that is a subsequence where numbers in the sequence increase.

5 2 8 6 3 6 9 7

Step 1: Define the problem with respect to subproblems	
52863697 	I
Two options: Either 5 is in the LIS or it's not	

Step 1: Define the problem with respect to subproblems

 $LIS(X) = \max\{LIS'(i)\}$

Longest increasing sequence for X is the longest increasing sequence starting at any element

And what is LIS' defined as (recursively)?

Step 2: build the solution from the bottom up
 Image: Constraint of the bottom up

$$LIS'(i) = \max_{i:i>1 \text{ and } x_i > x_i} \{1 + LIS'(X_{i...n})\}$$

 LIS':
 1

 5
 2
 8
 6
 3
 6
 9
 7

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Step 2: build the solution from
the bottom up
$$LIS'(i) = \max_{i:j < land x_j > x_1} \{1 + LIS'(X_{i...n})\}$$
$$LIS': 2 3 2 1 1$$
$$5 2 8 6 3 6 9 7$$
$$\uparrow$$

Memoized fibona	ссі	
FIBONACCI (n) 1 if $n = 1$ or $n = 2$ 2 return 1 3 else 4 return FIBONACCI $(n - 1)$	1) + Fibonacci(n	- 2)
FIBONACCI-MEMOIZED (n) 1 $fib[1] \leftarrow 1$	What els besides	se could we use an array?
$\begin{array}{ccc} 2 & fib 2 \leftarrow 1 \\ \hline 3 & \text{for } i \leftarrow 3 \text{ to } n \\ 4 & fib[i] \leftarrow \infty \\ \hline 5 & \text{return Fib-LookUP}(n) \end{array}$		Use ∞ to denote uncalculated
FIB-LOOKUP(n) 1 if $fib[n] < \infty$ 2 return $fib[n]$ 3 $x \leftarrow FIB-LOOKUP(n-1) + FII$ 4 if $x < fib[n]$ 5 $fib[n] \leftarrow x$ 6 return $fib[n]$	B-Lookup $(n-2)$	1

Memoization

Pros

- Can be more intuitive to code/understand
- Can be memory savings if you don't need answers to all subproblems

Cons

 Depending on implementation, larger overhead because of recursion (though often the functions are tail recursive)

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_1 into string s_2

Deletion:

ABACED

ABADES

Sub 'S' for 'D'

Edit distance e	xamples	
Edit(Banana, Car)) = 5	
Operations:		
Delete 'B'	anana	
Delete 'a'	nana	
Delete 'n'	naa	
Sub 'C' for 'n'	Саа	
Sub 'a' for 'r'	Car	

Edit distance examples	
Edit(Simple, Apple) = 3	
Operations:	
Delete 'S' imple	
Sub 'A' for 'i' Ample	
Sub 'm' for 'p' Apple	

Edit distance

Why might this be useful?

0-1 Knapsack problem

- 0-1 Knapsack A thief robbing a store finds *n* items worth v₁, v₂, ..., v_n dollars and weight w₁, w₂, ..., w_n pounds, where v_i and w_i are integers. The thief can carry at most W pounds in the knapsack. Which items should the thief take if he/she wants to maximize value?
- Repetition is allowed, that is you can take multiple copies
 of any item

 $K(w) = \max_{i:w_i \le w} \{K(w - w_i) + v_i\}$