Dynamic Programming continued	
David Kauchak cs302 Spring 2013	

Admin

- No office hours tomorrow
- Assignments 14 AND 15 will be made available today
- assignment 15 will be programming a DP algorithm, so look at this sooner than later

Where did "dynamic progra "I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. "An interesting question is, 'Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological Secretary of Defense, and he actually had a pathological fear and hatred of the word, research. I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would tum red, and he would get violent if people used the term, research, in his presence. You can imagine how he felt, then, about the term, mathematical. The RAND Cor- poration was employed by the Air Force, and the Air Force poration was employed by the Air Force, and fel I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word, 'programming.' I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying-I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities" (p. 159).	ng" come from? Richard Bellman On the Birth of Dynamic Programming Stuart Dreyfus http://www.eng.tau.ac.il/~ami/cd/ or50/1526-5463-2002-50-01-0048 .pdf

Longest increasing subsequence

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find the longest increasing subsequence $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, that is a subsequence where numbers in the sequence increase.

$$
52863697
$$

Longest increasing subsequence

Step 1: Define the problem with respect to subproblems

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find the longest increasing subsequence $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, that is a subsequence where numbers in the sequence increase.

52863697

Step 1: Define the problem with respect to subproblems

52863697
include 5

$$
5 \text { + LIS(8 } 633697)
$$

Step 1: Define the problem with respect to subproblems

Step 1: Define the problem with respect to subproblems

```
include 5
```

52863697
$5+\underbrace{\operatorname{LIS}^{\prime}}(863697)$
longest increasing sequence of the numbers starting with 8

Do we need to consider anything else for subsequences starting at 5 ?

```
Step 1: Define the problem
with respect to subproblems
    5 2 8 6 3 6 9 7
include 5
    5 + LIS'(8 6 3 6 9 7 7)
    5 + LIS'(6 3 6 9 7)
    5 + LIS'(6 9 7)
    5 + LIS'(9 7)
    5 + LIS'(7)
```

Step 1: Define the problem with respect to subproblems

don't

 include 552863697

LIS(2 863697)
Anything else?
Technically, this is fine, but now we have LIS and LIS' to worry about.

Can we rewrite LIS in terms of LIS'?

Step 1: Define the problem with respect to subproblems

$L I S(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}$
Longest increasing sequence for X
is the longest increasing sequence starting at any element

And what is LIS' defined as (recursively)?

Step 1: Define the problem with respect to subproblems

$$
L I S(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}
$$

Longest increasing sequence for X is the longest increasing sequence starting at any element

Longest increasing sequence starting at i

Step 2: build the solution from the bottom up

$L I S^{\prime}(i)=\max _{i i \gg \operatorname{land} x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$ LIS' :

52863697
\dagger

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i: i>1 \text { and } x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

LIS':
52863697
\uparrow

Step 2: build the solution from the bottom up
 $L I S^{\prime}(i)=\max _{i i \gg \operatorname{man} x_{x}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$
 LIS' :
 52863697

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i i>1>\operatorname{man} x_{x}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

```
LIS':
52863697
```


Step 2: build the solution from the bottom up

$$
L I S^{\prime}(i)=\max _{i: i>1 \text { and } x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . . n}\right)\right\}
$$

```
LIS':
    528636 97
```


Step 2: build the solution from the bottom up

$L I S^{\prime}(i)=\max _{i i \gg \operatorname{man} x_{x}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$
LIS': $\quad 2 \begin{array}{lllll}2 & 3 & 2 & 1\end{array}$
52863697
|

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i i \gg \operatorname{and} x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

```
LIS': 4 2 2 3 2 1 1
    5 2 8 6 3 6 9 7
    |
```


Step 2: build the solution from the bottom up

$L I S^{\prime}(i)=\max _{i i>1 \operatorname{land} X_{i} x_{1}}\left\{1+L I S^{\prime}\left(X_{i, . n}\right)\right\}$

:::
 :\%.\%
 $\because: \%$

```
LIS': 342223211
52863697
\(\dagger\)
LIS':3 4 2 2 3 2 1 1
    |
```


Step 2: build the solution from the bottom up

$L I S^{\prime}(i)=\max _{i \gg 1 \max X_{i}>X_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

What does my data structure for storing answers look like?

Step 2: build the solution from the bottom up

```
\(L I S^{\prime}(i)=\max _{i i>1>\operatorname{man} \alpha_{x}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}\)
LIS': 3 4 \(42 \begin{array}{llllll} & 2 & 3 & 2 & 1 & 1\end{array}\)
52863697
\(\operatorname{LIS}(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}\)
```



```
': 3 4 4 2 2 2 3 2 1 1
28636 9 7
LIS(X)=max{LIS (i)}
```

Step 2: build the solution from the bottom up

1-D array: only one thing changes for recursive calls, i

Step 2: build the solution from the bottom up

```
```

LIS(X)

```
```

LIS(X)
1 n}~\textrm{LENGTH}(X
1 n}~\textrm{LENGTH}(X
2 create array lis with n entries
2 create array lis with n entries
3 for i\leftarrown to 1
3 for i\leftarrown to 1
max}\leftarrow
max}\leftarrow
for }j\leftarrowi+1\mathrm{ to }
for }j\leftarrowi+1\mathrm{ to }
if X[j]>X[i]
if X[j]>X[i]
if 1+lis[j]}>>>\operatorname{max
if 1+lis[j]}>>>\operatorname{max
if 1+lis[j]}>>\operatorname{max
if 1+lis[j]}>>\operatorname{max
lis[i]}\leftarrowma
lis[i]}\leftarrowma
max}\leftarrow
max}\leftarrow
-0
-0
for }i\leftarrow1\mathrm{ to }
for }i\leftarrow1\mathrm{ to }
if lis[i]> max
if lis[i]> max
13 return max max\leftarrowlis[i]
13 return max max\leftarrowlis[i]
1 4 return max

```
    1 4 \text { return max}
```

```
                max }\leftarrow1
```

 max }\leftarrow1
 *
    ```
                    *
```


Step 2: build the solution from the bottom up

```
LIS(X)
    1 n}\mp@code{LENGTH(X)
    2 create array lis with n entries start from the end (bottom)
    |}\mathrm{ for }i\leftarrown\mathrm{ to 1
        for }j\leftarrowi+1\mathrm{ to }
            if }X[j]>X[i
                if 1+lis[j]> max
                                    max}\leftarrow1+lis[j
        lis[i]}\leftarrow\mathrm{ max
    max}\leftarrow
    max}\leftarrow
    1 for }i\leftarrow1\mathrm{ (to }
        if lis[i]}>>\operatorname{max
    return max
```


Step 2: build the solution from the bottom up

```
LIS(X)
    1 }n\leftarrow\operatorname{LENGTH(X)
    2 create array lis with n entries }\quadLI\mp@subsup{S}{}{\prime}(i)=\mp@subsup{\operatorname{max}}{\mathrm{ max }}{{}{1+LI\mp@subsup{S}{}{\prime}(\mp@subsup{X}{i\ldotsn}{n})
    3 for }i\leftarrown\mathrm{ to 1
        max}\leftarrow
        for }j\leftarrowi+1\mathrm{ to }
        if }X[j]>X[i
        if 1+lis[j]>\operatorname{max}
        max}\leftarrow1+lis[j
        lis[i]}\leftarrow\operatorname{max
max\leftarrow0
for }i\leftarrow1\mathrm{ to 
            if lis[i]>max
            max}\leftarrowlis[i
    return max
```


Step 2: build the solution from the bottom up

```
IS(X)
    1 n}\leftarrow\operatorname{LENGTH}(X
    2 \mp@code { c r e a t e ~ a r r a y ~ l i s ~ w i t h ~ n ~ e n t r i e s }
    for }i\leftarrown\mathrm{ to }
        max}\leftarrow
        for }j\leftarrowi+1 to n
        if X[j]>X[i]
            if 1+lis[j]> max
                max}\leftarrow1+lis[j
max\leftarrow0
max\leftarrow0
        if lis[i]>
            lis[i]> max
            max}\leftarrowlis[i
    return max
```


Step 2: build the solution from the bottom up

```
LIS(X)
    1 }n\leftarrow\operatorname{LENGTH}(X
    2 create array lis with n entries
    3 for }i\leftarrown\mathrm{ to 1
        for }j\leftarrowi+1\mathrm{ to }
            if X[j]>X[i]
                if 1+lis[j]> max
                max}\leftarrow1+lis[j
        lis[i]}\leftarrow\operatorname{max
    max}\leftarrow
            0
    for }i\leftarrow1\mathrm{ to }
            if lis[i]> max
    max}\leftarrowlis[i
                            initialization?
    return max
```

 \(\because \because:\)
 $\because \because:$
$\because \because:$
$\because:$

Running time?

$\operatorname{LIS}(X)$
$1 \quad n \leftarrow \operatorname{LENGTH}(X)$
2 create array lis with n entries
create array lis
for $i \leftarrow n$ to 1
n to 1
$\max \leftarrow 1$
for $j \leftarrow i+1$ to n
for $\begin{aligned} & j \leftarrow i+1 \text { to } n \\ & \text { if } X[j]>X[i]\end{aligned}$
if $X[j]>X[i]$
\quad if $1+l i s[j]>\max$
if $\begin{aligned} 1+l i s[j] & >\max \\ & \max \leftarrow 1+l i s[j]\end{aligned}$
lis $[i] \leftarrow \max$
$\max \leftarrow 0$
for $i \leftarrow 1$ to n
if $l i s[i]>\max$
4 return max

Another solution

Can we use LCS to solve this problem?
52863697 LCS

23566789

| Memoization |
| :--- | :--- |
| Sometimes it can be a challenge to write the function in a |
| bottom-up fashion |
| Memoization: |
| - Write the recursive function top-down |
| - Alter the function to check if we've already calculated the value |
| - If so, use the pre-calculate value |
| - If not, do the recursive call(s) |

Memoized fibonacci

```
Fibonacci(n)
```

 if \(n=1\) or \(n=\)
 if \(n=1\) or \(n=2\)
 3 el
 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

```
Fibonacci-Memoized}(n
1 fib[1]}
    fib[2]}\leftarrow
    for }i\leftarrow3\mathrm{ to }
    4 fib[i]}\leftarrow
    5 return Fib-Lookup(n)
    Fib-LоокUP(n)
    if fib[n]<\infty
    return fib[n]
    x}\leftarrow\textrm{Fib-LOOKUP}(n-1)+\mathrm{ Fib-LookuP ( }n-
    4 if }x<fib[n
    fib[n]}\leftarrow
    return fib[n]
```


Memoized fibonacci

```
IbONACCI( }
    if }n=1\mathrm{ or }n=
    Or}n=
    3
        return Fibonacci(n-1) + Fibonacci( }n-2
```

 Fibonacci-Memoized (\(n\))
 1 fib[1] \(\leftarrow 1\)
 \(2 f i b[2] \leftarrow 1\)
 3 for \(i \leftarrow 3\) to \(n\)
 \(4 \quad\) fib \([i] \leftarrow \infty\)
 5 return Fib-Lookup \((n)\)
 Fib-Lookup(n)
 1 if \(f i b[n]<\infty\)
 2 return \(f i b[n]\)
 3 fib[\(n] \leftarrow \operatorname{Fib}-\operatorname{LookUP}(n-1)+\operatorname{Fib}-\operatorname{LookUP}(n-2)\)
 4 return \(f i b[n]\)

Memoized fibonacci

```
FIBONACCI(n)
1 if }n=1\mathrm{ or }n=
```

2
3
4 else

```
return Fibonacci (n-1)+\operatorname{Fibonacci}(n-2)
```


Fibonacci-Memoized (n)

$1 \quad$ fib $[1] \leftarrow 1$
2 fib $[2] \leftarrow 1$
3 for $i \leftarrow 3$ to $n \quad$ Use ∞ to denote
return Fib-LOOKLP uncalculated

Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return $f i b[n]$
$3 \quad x \leftarrow \operatorname{Fib}-\operatorname{Lookup}(n-1)+$ Fib-Lookup $(n-2)$
4 if $x<f i b[n]$
$f i b[n] \leftarrow x$
6 return fib[n]

Memoized fibonacci

Memoized fibonacci

Fibonacci(n)
1 if $n=1$ or $n=2$
${ }_{3}^{2}$ else
return 1
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

$\left\lvert\, \begin{aligned} & \because \because: \\ & \because \because: \\ & \vdots \because: \\ & \end{aligned}\right.$

```
Fibonacci-Memoized(n)
What else could we use besides an array?
1 \(f i b[1] \leftarrow 1\)
2 fib[2] \(\leftarrow 1\)
3 for \(i \leftarrow 3\) to \(n\)
\(f i b[i] \leftarrow \infty\) \(\underset{\text { IB-Lookup }(n)}{ }\)
return Ib Lookup(n)
if \(f i b[n]<\infty\)
return fib \([n]\)
\(3 x \leftarrow \operatorname{Fib}-\operatorname{Lookup}(n-1)+\) Fib-Lookup \((n-2)\)
4 if \(x<f i b[n]\)
\(5 \quad\) fib \([n] \leftarrow x\)
6 return fib[n]
        Use }\infty\mathrm{ to denote
                uncalculated
```

Fibonacci(n)
1 if $n=1$ or $n=2$
2 return
2
3
4 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

1 if $f i b[n]<\infty$

4 if $x<f i b[n]$
6 return $f i b[n]$

```
Fibonacci-Memoized}(n
```

Fibonacci-Memoized}(n
1 fib[1]}
1 fib[1]}
2 fib[2]}\leftarrow
2 fib[2]}\leftarrow
for }i\leftarrow3\mathrm{ to }
for }i\leftarrow3\mathrm{ to }
4 fib[i]}\leftarrow
4 fib[i]}\leftarrow
return Fib-LookuP(n)
return Fib-LookuP(n)
Fib-LookUP(n) Check if we already
Fib-LookUP(n) Check if we already
1 if fib[n]<\infty
1 if fib[n]<\infty
3 x\leftarrowFIB-LOOKUP(}n-1)+\mathrm{ FIB-LOOKUP (}n-2\mathrm{)
3 x\leftarrowFIB-LOOKUP(}n-1)+\mathrm{ FIB-LOOKUP (}n-2\mathrm{)
4 if }x<fib[n
4 if }x<fib[n
fib[n]}\leftarrow
fib[n]}\leftarrow
6 return fib[n]

```
    6 return fib[n]
```


Memoized fibonacci

```
FibONACCI( }
```

 if \(n=1\) or \(n=2\)
 2
 3 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

```
    Fibonacci-Memoized (n)
    1 fib[1]}\leftarrow
    fib[2]}
    for }i\leftarrow3\mathrm{ to n
    4 fib[i]\leftarrow\infty
    5 return Fib-Lookup(n)
    Fib-Lookup(n)
    if fib[n]<\infty
    2 return fib[n]
    2 cerernern fib[n] calculate the value
    4 if }x<fib[n
    5 fib[n]\leftarrowx
    6 return fib[n]
    return FIB[l:-\infty
```


Memoized fibonacci

```
Fibonacci(n)
if n=1 or }n
if }n=1\mathrm{ or }n=
```

3 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{FibonaCci}(n-2)$

Fibonacci-Memoized (n)

$1 \mathrm{fib}[1] \leftarrow 1$
fib $[2] \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad$ fib $[i] \leftarrow \infty$
5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return $f i b[n]$
$3 x \leftarrow$ Fib-Lookup $(n-1)+$ Fib-Looкup $(n-2)$
4 if $x<f i b[n] \quad$ store the value

:8.
©

| Memoization | $\because::_{0}$ |
| :--- | :--- |
| Pros | |
| \quad - Can be more intuitive to code/understand | |
| \quadall subproblems | |
| Cons
 \quad Depending on implementation, larger overhead
 because of recursion (though often the functions are
 tail recursive) | |

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Insertion:

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:
ABACED

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

ABACED \square BACED
Delete
'A'

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Substitution:

Sub ' D ' for ' C ' Sub ' S ' for ' D '

Edit distance examples

```
Edit(Happy, Hilly) = 3
```

Operations:

$$
\begin{array}{ll}
\text { Sub 'a' for 'i' } & \text { Hippy } \\
\text { Sub 'I' for 'p' } & \text { Hilpy } \\
\text { Sub 'l' for 'p' } & \text { Hilly }
\end{array}
$$

| Edit distance examples | $\because: \%$ $\because: 8:$ $\because: 8:$ $: 8: 8$ |
| :---: | :---: |
| Edit(Banana, Car) = 5 | |
| Operations: | |
| Delete 'B' anana | |
| Delete 'a' nana | |
| Delete ' n ' naa | |
| Sub ' C ' for ' n ' Caa | |
| Sub 'a' for 'r' Car | |

| Edit distance examples | |
| :---: | :---: |
| Edit(Simple, Apple) $=3$ | |
| Operations: | |
| Delete ' S ' imple | |
| Sub ' A ' for ' i ' Ample | |
| Sub 'm' for 'p' Apple | |

| Edit distance | |
| :---: | :---: |
| Why might this be useful? | |

| Combining results ${ }^{\text {cen }}$ | | |
| :---: | :---: | :---: |
| Insert: | $\operatorname{Edit}(X, Y)=$ | ${ }_{m-1}$) |
| Delete: | $\operatorname{Edit}(X, Y)=$ | ${ }_{1 . . . m}$) |
| Substitute: | $\operatorname{Edit}(X, Y)=$ | ${ }_{1 . . m-1}$) |
| Equal: | $\operatorname{Edit}(X, Y)=$ | |

| Running time
 $\Theta(n m)$
 ```\(\operatorname{Edit}(X, Y)\) \\ \(1 \quad m \leftarrow\) length \([X]\) \\ \(n \leftarrow\) length \([Y]\) \\ \(d[i, 0] \leftarrow i\) \\ for \(j \leftarrow 0\) to \(n\) \\ for \(i \leftarrow 1\) to \(d[0, j] \leftarrow j\) \\ for \(i \leftarrow 1\) to \(m\) \\ \(8 \quad\) for \(j \leftarrow 1\) to \(n\) \\ \(d[i, j]=\min (1+d[i-1, j]\), \(1+d[i, j-1]\), \\ \(\left.\operatorname{DIFF}\left(x_{i}, y_{j}\right)+d[i-1, j-1]\right)\) \\ 10 return \(d[m, n]\)``` \qquad | |
| :---: | :---: |

[^0]
Quick summary

- Step 1: Define the problem with respect to subproblems
- We did this for divide and conquer too. What's the difference?
- You can identify a candidate for dynamic programming if there is overlap or repeated work in the subproblems being created
- Step 2: build the solution from the bottom up
- Build the solution such that the subproblems referenced by larger problems are already solved
- Memoization is also an alternative

0-1 Knapsack problem

- 0-1 Knapsack - A thief robbing a store finds n items worth $v_{1}, v_{2}, . ., v_{n}$ dollars and weight
$w_{1}, w_{2}, \ldots, w_{n}$ pounds, where v_{i} and w_{i} are integers. The thief can carry at most W pounds in the knapsack. Which items should the thief take if he/she wants to maximize value?
- Repetition is allowed, that is you can take multiple copies of any item

$$
K(w)=\max _{i, w \leq w}\left\{K\left(w-w_{i}\right)+v_{i}\right\}
$$

[^0]: ## Variants

 - Only include insertions and deletions
 - What does this do to substitutions?
 - Include swaps, i.e. swapping two adjacent characters counts as one edit
 - Weight insertion, deletion and substitution differently
 - Weight specific character insertion, deletion and substitutions differently
 - Length normalize the edit distance

