
4/11/13

1

Dynamic
Programming

continued

David Kauchak
cs302

Spring 2013

Admin

l  No office hours tomorrow
l  Assignments 14 AND 15 will be made

available today
l  assignment 15 will be programming a DP

algorithm, so look at this sooner than later

Where did “dynamic programming” come from?

Richard Bellman On the Birth of
Dynamic Programming

Stuart Dreyfus

http://www.eng.tau.ac.il/~ami/cd/
or50/1526-5463-2002-50-01-0048
.pdf

Longest increasing
subsequence

Given a sequence of numbers X = x1, x2, …, xn
find the longest increasing subsequence
(i1, i2, …, ik), that is a subsequence where
numbers in the sequence increase.

5 2 8 6 3 6 9 7

4/11/13

2

Longest increasing
subsequence

5 2 8 6 3 6 9 7

Given a sequence of numbers X = x1, x2, …, xn
find the longest increasing subsequence
(i1, i2, …, ik), that is a subsequence where
numbers in the sequence increase.

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7

Two options:
Either 5 is in the
LIS or it’s not

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

4/11/13

3

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

This would allow for the option of
sequences starting with 3 which
are NOT valid!

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS’(8 6 3 6 9 7)

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 5?

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7

5 + LIS’(6 3 6 9 7)

5 + LIS’(6 9 7)
5 + LIS’(9 7)
5 + LIS’(7)

include 5

5 + LIS’(8 6 3 6 9 7)

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
don’t
include 5

LIS(2 8 6 3 6 9 7)
Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS’?

4/11/13

4

Step 1: Define the problem
with respect to subproblems

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

And what is LIS’ defined as (recursively)?

Step 1: Define the problem
with respect to subproblems

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Longest increasing sequence starting at i

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’:

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/11/13

5

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/11/13

6

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/11/13

7

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

)}('{max)(iLISXLIS
i

=

Step 2: build the solution from
the bottom up

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

What does my data structure for
storing answers look like?

Step 2: build the solution from
the bottom up

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

1-D array: only one thing changes
for recursive calls, i

4/11/13

8

Step 2: build the solution from
the bottom up

Step 2: build the solution from
the bottom up

start from the end (bottom)

Step 2: build the solution from
the bottom up

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

)}('{max)(iLISXLIS
i

=

4/11/13

9

Step 2: build the solution from
the bottom up

initialization?

Running time?

Θ(n2)

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

4/11/13

10

Memoization
Sometimes it can be a challenge to write the function in a
bottom-up fashion

Memoization:
l  Write the recursive function top-down
l  Alter the function to check if we’ve already calculated the value
l  If so, use the pre-calculate value
l  If not, do the recursive call(s)

Memoized fibonacci

Memoized fibonacci Memoized fibonacci

Use ∞ to denote
uncalculated

4/11/13

11

Memoized fibonacci

Use ∞ to denote
uncalculated

What else could we use
besides an array?

Memoized fibonacci

Check if we already
calculated the value

Memoized fibonacci

calculate the value

Memoized fibonacci

store the value

4/11/13

12

Memoization
Pros

l  Can be more intuitive to code/understand
l  Can be memory savings if you don’t need answers to

all subproblems

Cons

l  Depending on implementation, larger overhead
because of recursion (though often the functions are
tail recursive)

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Insertion:

ABACED ABACCED DABACCED

Insert
‘C’

Insert
‘D’

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED

Delete
‘A’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

4/11/13

13

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED BACE

Delete
‘A’

Delete
‘D’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance
(aka Levenshtein distance)

Substitution:

ABACED ABADED ABADES

Sub ‘D’ for ‘C’ Sub ‘S’ for ‘D’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

Edit distance examples

Edit(Happy, Hilly) = 3

Operations:

Sub ‘a’ for ‘i’ Hippy

Sub ‘l’ for ‘p’ Hilpy

Sub ‘l’ for ‘p’ Hilly

4/11/13

14

Edit distance examples

Edit(Banana, Car) = 5

Operations:

Delete ‘B’ anana

Delete ‘a’ nana

Delete ‘n’ naa

Sub ‘C’ for ‘n’ Caa

Sub ‘a’ for ‘r’ Car

Edit distance examples

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple

Sub ‘A’ for ‘i’ Ample

Sub ‘m’ for ‘p’ Apple

Edit distance

Why might this be useful?

Is edit distance symmetric?

that is, is Edit(s1, s2) = Edit(s2, s1)?

Why?
l  sub ‘i’ for ‘j’ → sub ‘j’ for ‘i’
l  delete ‘i’ → insert ‘i’
l  insert ‘i’ → delete ‘i’

Edit(Simple, Apple) =? Edit(Apple, Simple)

4/11/13

15

Calculating edit distance

X = A B C B D A B

Y = B D C A B A

Ideas?

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

After all of the operations, X needs
to equal Y

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

Operations: Insert

Delete

Substitute

Insert

X = A B C B D A ?

Y = B D C A B ?

4/11/13

16

Insert

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...1...1 −+= mn YXEditYXEdit

Delete

X = A B C B D A ?

Y = B D C A B ?

Delete

X = A B C B D A ?

Y = B D C A B ?

),(1),(...11...1 mn YXEditYXEdit −+=

Edit

Substition

X = A B C B D A ?

Y = B D C A B ?

4/11/13

17

Substition

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...11...1 −−+= mn YXEditYXEdit

Anything else?

X = A B C B D A ?

Y = B D C A B ?

Equal

X = A B C B D A ?

Y = B D C A B ?

Equal

X = A B C B D A ?

Y = B D C A B ?
Edit

),(),(1...11...1 −−= mn YXEditYXEdit

4/11/13

18

Combining results

),(),(1...11...1 −−= mn YXEditYXEdit

),(1),(1...11...1 −−+= mn YXEditYXEdit

),(1),(...11...1 mn YXEditYXEdit −+=

),(1),(1...1...1 −+= mn YXEditYXEditInsert:

Delete:

Substitute:

Equal:

Combining results

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−−

−

−

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Running time

Θ(nm)

Variants
l  Only include insertions and deletions

l  What does this do to substitutions?

l  Include swaps, i.e. swapping two adjacent characters
counts as one edit

l  Weight insertion, deletion and substitution differently

l  Weight specific character insertion, deletion and
substitutions differently

l  Length normalize the edit distance

4/11/13

19

Quick summary
l  Step 1: Define the problem with respect to subproblems

l  We did this for divide and conquer too. What’s the difference?
l  You can identify a candidate for dynamic programming if there is

overlap or repeated work in the subproblems being created

l  Step 2: build the solution from the bottom up
l  Build the solution such that the subproblems referenced by larger

problems are already solved
l  Memoization is also an alternative

0-1 Knapsack problem
l  0-1 Knapsack – A thief robbing a store finds n items

worth v1, v2, .., vn dollars and weight
w1, w2, …, wn pounds, where vi and wi are integers. The
thief can carry at most W pounds in the knapsack.
Which items should the thief take if he/she wants to
maximize value?

l  Repetition is allowed, that is you can take multiple copies
of any item

})({max)(
: iiwwi

vwwKwK
i

+−=
≤

