

Dynamic programming

One of the most important algorithm tools!

Very common interview question

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to sub-problems AND

the sub-problems are overlapping

Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots What is the recurrence for the n^{th} Fibonacci number?

F(n) = F(n-1) + F(n-2)

The solution for n is defined with respect to the solution to smaller problems (n-1 and n-2) $% \left(n-1\right) =0$

if	n	=	1	or	n	=	2

- return 1
- return FIBONACCI(n-1) + FIBONACCI(n-2)

F(n) = F(n-1) + F(n-2)

6

$1 \\ 2$	$\begin{array}{c} \text{SST-COUNT-DP}(n) \\ c[0] = 1 \\ c[1] = 1 \\ \text{for } k \leftarrow 2 \text{ to } n \\ c[k] \leftarrow 0 \end{array}$	
5	for $i \leftarrow 1$ to k	
6 7		
	1 1 2 5	
	0 1 2 3 4 5 n	

9

Longest common subsequence (LCS)

For a sequence $X = x_1, x_2, ..., x_n$, a subsequence is a subset of the sequence defined by a set of increasing indices $(i_1, i_2, ..., i_k)$ where $1 \le i_1 < i_2 < ... < i_k \le n$

X = A B A C D A B A B

ACA?

Longest common subsequence (LCS) For a sequence $X = x_1, x_2, ..., x_n$, a subsequence is a subset of the sequence defined by a set of increasing indices $(i_1, i_2, ..., i_k)$ where $1 \le i_1 < i_2 < ... < i_k \le n$

ACA

Longest common subsequence (LCS)

For a sequence X = $x_1, x_2, ..., x_n$, a subsequence is a subset of the sequence defined by a set of increasing indices $(i_1, i_2, ..., i_k)$ where $1 \le i_1 < i_2 < ... < i_k \le n$

X = A B A C D A B A B

DCA?

Longest common subsequence (LCS)

For a sequence $X = x_1, x_2, ..., x_n$, a subsequence is a subset of the sequence defined by a set of increasing indices $(i_1, i_2, ..., i_k)$ where $1 \le i_1 < i_2 < ... < i_k \le n$

X = A B A C D A B A B

AADAA?

LCS problem

Given two sequences X and Y, a **common subsequence** is a subsequence that occurs in both X and Y Given two sequences $X = x_1, x_2, ..., x_n$ and $Y = y_1, y_2, ..., y_n$,

What is the longest common subsequence?

X = A B C B D A BY = B D C A B A

LCS[i, j] =	$\begin{cases} 1+LCS(i-1,j-1) & \text{if } x_i = y_j \\ \max(LCS(i-1,j))LCS(i,j-1) & \text{otherwise} \end{cases}$	
j i	0 1 2 3 4 5 6 y _j BDCABA	I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	For Fibonacci and tree counting, we had to initialize some entries in the array. Any here?	

LCS[i, j] =	$\begin{cases} 1 + LCS[i-1, j-1] & \text{if } x_i = y_j \\ \max(LCS[i-1, j], LCS[i, j-1] & \text{otherwise} \end{cases}$	
j	0 1 2 3 4 5 6	
i	y _j BDCABA	
0 x _i	0 0 0 0 0 0	
1 A	0	
2 B		
3 C	smaller in either dimension.	
4 B	0	
5 D	0	
6 A	0	
7 B	0	

LCS[i, j] =	$\begin{cases} 1 + LCS[i-1, j-1] \\ max(LCS[i-1, j], LCS[i, j] \end{cases}$	$\begin{array}{c} if \ x_i = y_j \\ \hline -1] \ otherwise \end{array}$
j _ i	0 1 2 3 4 5 6 y _j BDCABA	I
0 x _i	0 0 0 0 0 0 0	
1 A	0 ?	LCS(A, B)
2 B	0	
3 C	0	
4 B	0	
5 D	0	
6 A	0	
7 B	0	

LCS[i, j] =	$\begin{cases} 1 + LCS[i-1, j-1] & \text{if } x_i = y_j \\ \max(LCS[i-1, j], LCS[i, j-1] & \text{otherwise} \end{cases}$	
j i	0 1 2 3 4 5 6 y _i BDCABA	I
1 A 2 B 3 C	0 0 0 0	

LCS[i, j] =	$ \frac{1 + LCS[i - 1, j - 1]}{\max(LCS[i - 1, j], LCS[i, j - 1]} $	$if x_i = y_j$ otherwise	
j i	0 1 2 3 4 5 6 y _j BDCABA		I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0	LCS(A, BD	CA)

LCS	[i, j] = .	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ \max(LCS[i - 1, j], LCS[i, j - 1] \end{cases}$	<i>i</i> f $x_i = y_j$ otherwise	
_	j i	0 1 2 34 5 6 y _j BDCABA		l
		0 0 0 0 0 0		
	1 A	00001	LCS(A, BD	CA)
	2 B	0		
:	3 C	0		
		0		
4	5 D	0		
(6 A	0		
	7 B	0		
	1			

LCS[i, j] =	1 + LCS[i - 1, j - 1] max(LCS[i - 1, j], LCS[i, j - 1])	$\begin{array}{c} if x_i = y_j \\ -1] \text{otherwise} \end{array}$	
j i	0 1 2 3 4 5 6 y _j BDCABA		I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 0 0 0 000 0 0 0 0 011 1 0 1 1 122 0 1 1 222 2 0 1 1 22? 0 0 0	LCS(ABCB, BD	CAB)

LCS[i, j] = c	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ \max(LCS[i - 1, j], LCS[i]) \end{cases}$	$if x_i = y_j$, $j - 1$] otherwise	
j	0 1 2 3 4 5 6 y _j BDCABA		1
	0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 2 2 0 1 1 2 2 2 0 1 1 2 2 3 0 0 0	LCS(ABCB, BE)CAB)

<i>LCS</i> [<i>i</i> , <i>j</i>] =	$\begin{cases} 1 + LCS[i-1, j-1] & \text{if } x_i = y_j \\ \max(LCS[i-1, j], LCS[i, j-1]) & \text{otherwise} \end{cases}$	
j i	0 1 2 3 4 5 6 y _j BDCABA	I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 1 1 222 2 0 1 1 223 3 0 1 2 223 3	?

Run	ning time?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	

Keeping track of the solutionOur LCS algorithm only calculated the length of the
LCS between X and YWhat if we wanted to know the actual sequence?Keep track of this as well... $\binom{9}{\text{for } j \leftarrow 1 \text{ to } n}$
 $\binom{10}{12}$ elseif $c[i, j] \leftarrow 1 + c[i - 1, j - 1]$
 $\binom{10}{12}$ $c[i, j] \leftarrow (i, j - 1]$ $c[i, j] \leftarrow (i, j - 1]$ $c[i, j] \leftarrow c[i, j - 1]$

LCS[i, j] =	$\begin{cases} 1 + LCS[i, j] \\ \max(LCS[i-1, j], LCS[i, j]) \end{cases}$	$if x_i = y_j$ -1] otherwise	
j _ i	0 1 2 3 4 5 6 y _j BDCABA		I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	We can follow the arrows to generate the solution	

LCS[i, j] = 0	$\begin{cases} 1 + LCS[i, j] \\ \max(LCS[i-1, j], LCS[i, j-1]) \end{cases}$	<i>i</i> f $x_i = y_j$ otherwise	
j i	0 1 2 3 4 5 6 y _j BDCABA	I	
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 1 1 2 2 2 2	We can follow the arrows to generat the solution BCBA	