

Administative

Fibonacci numbers

$1,1,2,3,5,8,13,21,34, \ldots$
What is the recurrence for the $\mathrm{n}^{\text {th }}$ Fibonacci number?
$F(n)=F(n-1)+F(n-2)$
The solution for n is defined with respect to the solution to smaller problems ($\mathrm{n}-1$ and $\mathrm{n}-2$)

Fibonacci: a first attempt
Fibonacci(n)
1 if $n=1$ or $n=2$
$2 \quad$ return 1
3 else
return $\operatorname{FibonaCci}(n-1)+\operatorname{FibONACCI}(n-2)$

Is it correct?

Fibonacci(n)
1 if $n=1$ or $n=2$
2 return 1
3 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

$$
F(n)=F(n-1)+F(n-2)
$$

Running time

Fibonacci (n)
1 if $n=1$ or $n=2$
$\begin{array}{ll}2 \\ 3 & \\ & \text { else }\end{array}$
return 1
4
return $\operatorname{FibonACCI}(n-1)+\operatorname{FibonACCI}(n-2)$

Each call creates two recursive calls

Each call reduces the size of the problem by 1 or 2

Creates a full binary of depth n
$\mathrm{O}\left(2^{\mathrm{n}}\right)$

Identifying a dynamic programming problem

The solution can be defined with respect to solutions to subproblems

The subproblems created are overlapping, that is we see the same subproblems repeated

Creating a dynamic programming solution

Step 1: Identify a solution to the problem with respect to smaller subproblems (pretend like you have a solver, but it only works on smaller problems)

- $F(n)=F(n-1)+F(n-2)$

Step 2: bottom up - start with solutions to the smallest problems and build solutions to the larger problems

Is it correct?

```
Fibonacci-DP \((n)\)
1 fib[1] \(\leftarrow 1\)
\(2 f i b[2] \leftarrow 1\)
for \(i \leftarrow 3\) to \(n\)
\(f i b[i] \leftarrow f i b[i-1]+f i b[i-2]\)
return \(f i b[n]\)
```

$F(n)=F(n-1)+F(n-2)$

Step 1: define the answer with respect to subproblems

$$
\begin{aligned}
& \mathrm{T}(\mathrm{i})=\mathrm{T}(\mathrm{i}-1) * \mathrm{~T}(\mathrm{n}-\mathrm{i}) \\
& T(n)=\sum_{i=1}^{n} T(i-1) * T(n-i)
\end{aligned}
$$

```
BST-CounT(n)
    1 if }n=
    return 1
    else
    sum =0
    for }i\leftarrow1\mathrm{ to }
sum}\leftarrowsum+\operatorname{BST}-\operatorname{CounT}(i-1)*\operatorname{BST}-\operatorname{CounT}(n-i
return sum
```

```
Step 2: Generate a solution
from the bottom-up
    BST-Count(n)
    1 if }n=
    2 return 1
    lll
            for }i\leftarrow1\mathrm{ to }
            sum}\leftarrow\operatorname{sum}+\operatorname{BST-CounT}(i-1)*\operatorname{BST-Count}(n-i
        return sum
    BST-CounT-DP(n)
    1}c[0]=
    2 c[1]=1
    3 for }k\leftarrow2\mathrm{ to }
    4 c[k]\leftarrow0
    | for }i\leftarrow1\leftarrow1\mathrm{ to }
    6 rreturn c[n] c
|
    for }k\leftarrow2\mathrm{ to }
    5 for }i\leftarrow1\mathrm{ to }
            sum=0
```

BST-Count-DP (n)
$\begin{array}{ll}1 & c[0]=1 \\ 2 & c[1]=1\end{array}$
$2 c[1]=1$
3 for $k \leftarrow 2$ to n
4 for $k \leftarrow 2$ to n
$c[k] \leftarrow 0$
$\begin{array}{lc}5 & \text { for } i \leftarrow 1 \text { to } k \\ 6 & c[k] \leftarrow c[k]+c[i-1] * c[k-i] \\ 7 & \text { return } c[n]\end{array}$
return $c[n]$

```BST-Count-DP ( \(n\) ) \(c[0]=1\) \(c[1]=1\) for \(k \leftarrow 2\) to \(n\) \(c[k] \leftarrow 0\) for \(i \leftarrow 1\) to \(k\) \(c[k] \leftarrow c[k]+c[i-1] * c[k-i]\) return \(c[n]\)```	
012345	


BST-Count-DP ( $n$ ) ```\(c[0]=1\) \(c[1]=1\) for \(k \leftarrow 2\) to \(n\) \(c[k] \leftarrow 0\) for \(i \leftarrow 1\) to \(k\) \(c[k] \leftarrow c[k]+c[i-1] * c[k-i]\) return \(c[n]\)```	
$\begin{array}{cccccccc} 1 & 1 & & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & \ldots & n \end{array}$	


BST-Count-DP ( $n$ ) ```\(c[0]=1\) \(c[1]=1\) for \(k \leftarrow 2\) to \(n\) \(c[k] \leftarrow 0\) for \(i \leftarrow 1\) to \(k\) \(c[k] \leftarrow c[k]+c[i-1] * c[k-i]\) return \(c[n]\)```	
$\left.\begin{array}{lllll} c & c[0]^{*} c[1]+c[1]^{*} c[0] \\ 1 & 1 & 1 & & \\ & & & & \\ 0 & 1 & 2 & 3 & 4 \end{array}\right) 5$	



BST-Count-DP ( $n$ ) ```\(c[0]=1\) \(c[1]=1\) for \(k \leftarrow 2\) to \(n\) \(c[k] \leftarrow 0\) for \(i \leftarrow 1\) to \(k\) \(c[k] \leftarrow c[k]+c[i-1] * c[k-i]\) return \(c[n]\)```	
$\begin{array}{llllllll} 1 & 1 & 2 & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & \ldots & n \end{array}$	




## Running time?

BST-Count-DP( $n$ )
$1 \quad c[0]=1$
$\begin{array}{ll}1 & c[0]=1 \\ 2 & c[1]=1\end{array}$
$c[1]=1$
for $k \leftarrow 2$ to
3
4 $\quad$ for $k \leftarrow 2$ to $n+0$

$$
\text { for } i \leftarrow 1 \text { to } k
$$

return $c[n]$

## Longest common subsequence (LCS)

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ( $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}$ ) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

> X = A B A C D A B A B

ABA

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ( $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}$ ) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

ACA?

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ( $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}$ ) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

> X = A B A C D A B A B

DCA?

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices $\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

ACA

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices $\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

> X = A B A CDABAB


## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ( $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}$ ) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

AADAA?

## LCS problem

Given two sequences $X$ and $Y$, a common subsequence is a subsequence that occurs in both $X$ and $Y$
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$,

What is the longest common subsequence?

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

## Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ( $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}$ ) where
$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

## AADAA

## LCS problem



Given two sequences $X$ and $Y$, a common subsequence is a subsequence that occurs in both $X$ and $Y$
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$,

What is the longest common subsequence?

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

## Step 1: Define the problem with respect to subproblems

$$
X=A B C B D A B
$$

$Y=B D C A B A$

Assume you have a solver for smaller problems

Step 1: Define the problem with respect to subproblems

$$
X=A B C B D A ?
$$

$Y=B D C A B ?$

Two cases: either the characters are the same or they're different

## Step 1: Define the problem

 with respect to subproblems$$
\begin{aligned}
& X=A B C B D A ? \\
& Y=B D C A B ?
\end{aligned}
$$

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& \mathrm{X}=\underset{\text { ABCB DAA }}{\mathrm{Y}} \mathrm{PBDCABA} \quad \begin{array}{l}
\text { The characters are } \\
\text { part of the LCS }
\end{array} \\
& \begin{array}{l}
\text { What is the recursive } \\
\text { relationship? }
\end{array}
\end{aligned}
$$

If they're the same
$\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 . . n-1}, Y_{1 \ldots m-1}\right)+x_{n}$

```
Step 1: Define the problem
with respect to subproblems
 X=ABCBDAB
 LCS
 Y=BDCABA
 If they're different
 LCS(X,Y)=LCS(X1..n-1},Y
```

Step 1: Define the problem with respect to subproblems

$$
X=\underset{\text { Lcs }}{\text { A B C B D B }}
$$

$$
Y=B D C A B A
$$

f they're different

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X, Y_{1 . . m-1}\right)
$$

Step 1: Define the problem with respect to subproblems

$$
X=A B C B D A B
$$

$$
Y=B D C A B A
$$

$$
X=A B C B D A B
$$

$$
Y=B D C A B A
$$

If they're different

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$


## Step 2: Build the solution from the bottom up

$$
\begin{gathered}
\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}
1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\
\max \left(L C S\left(X_{1 \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }
\end{array}\right. \\
\text { What types of subproblem } \\
\text { solutions do we need to store? } \\
\operatorname{LCS}\left(\mathrm{X}_{1 \ldots \mathrm{j}}, \mathrm{Y}_{1 \ldots . \mathrm{k}}\right) \\
\operatorname{LCS}[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

$L C S[i, j]=\left\{\begin{array}{cl}1+L C S(i-1, j-1) & i f x_{i}=y_{j} \\ \max (L C S(i-1, j) L C S(i, j-1) & \text { otherwise }\end{array}\right.$

$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
j 0123456

i	$\mathrm{y}_{\mathrm{j}}$ B D C A B A
$0 \mathrm{x}_{\mathrm{i}}$	00000000

1 A 0
2 B $0 \quad$ Need to initialize values within 1
3 C 0 smaller in either dimension.

4 B 0
5 D 0
6 A 0
7 B 0


$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
$\because \because:$
$\because \because:$
$\because:$
:0.

	$j$	0	1	2	3	4

1 A 0000 ?
2 B
3 C 0
4 B 0
A 0
7 B 0



$L C S[i, j]=\{$	$\left\{\begin{array}{c} 1+L C S[i-1, j-1] \\ \max (L C S[i-1, j], L C S[i, j-1] \end{array}\right.$	if $x_{i}=y_{j}$ otherwise	$\because \because: 8$ $\because \because 8$ $\because 8$.
	$\begin{array}{lllll} 0 & 1 & 2 & 3 & 4 \\ y_{j} & B D C A B A \end{array}$	Where's the final answer?	
$0 \mathrm{x}_{\mathrm{i}}$	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$		
1 A	00000111		
2 B	0111122		
3 C	0112222		
4 B	0112233		
5 D	0122233		
6 A	0122334		
7 B	0122344		



## The algorithm

                    •
    ```
LCS-Length \((X, Y)\)
\(1 \quad m \leftarrow\) length \([X]\)
\(2 n \leftarrow\) length \([Y]\)
\(3 c[0,0] \leftarrow 0\)
4 for \(i \leftarrow 1\) to \(m\)
\(\begin{array}{lll}5 & c[i, 0] & \text { for } j \leftarrow 0 \\ 6 & \text { to } n\end{array}\)
for \(j \leftarrow 1\) to \(n\)
 \(c[0, j] \leftarrow 0\)
8 for \(i \leftarrow 1\) to \(m\)
\(\begin{array}{rlr}8 & \text { for } i \leftarrow 1 \text { to } m & \\ 9 & \quad \text { for } j \leftarrow 1 \text { to } n \\ 10 & & \text { if } x_{i}=y_{i}\end{array}\)
 \(\begin{aligned} \text { for } j \leftarrow & \leftarrow \text { to } n \\ & \text { if } x_{i}=y_{i}\end{aligned}\)
 \(c[i, j] \leftarrow 1+c[i-1, j-1]\)
elseif \(c[i-1, j]>c[i, j-1]\)
 elseif \(c[i-1, j]>c[i, j-1]\)
else \(\quad c[i, j] \leftarrow c[i-1, j]\)
 else
 \(c[i, j] \leftarrow c[i, j-1]\)
 Base case initialization
\(2 \quad n \leftarrow\) length
```

The algorithm
LCS-Length $(X, Y)$
$1 m \leftarrow$ length $[X]$
$\begin{array}{ll}1 & m \leftarrow l \text { ength }[X] \\ 2 & n \leftarrow \text { length }[Y]\end{array}$
$2 \quad n \leftarrow$ length $[\mathrm{X}]$
$3 c[0,0] \leftarrow 0$
4 for $i \leftarrow 1$ to $m$
$\begin{array}{lrl}5 & & c[i, 0] \leftarrow 0 \\ 6 & \text { for } j \leftarrow 1 \text { to } n\end{array}$
$7 \quad c[0, j] \leftarrow$

| 7 | $c[0, j] \leftarrow$ |
| :--- | :--- |
| 8 | for $i \leftarrow 1$ to $m$ |
| 9 |  |

            for \(j \leftarrow 1\) to \(n\)
            1 to \(n\)
    if $x_{i}=y_{i}$
if $x_{i}=y_{i}$
$\quad c[i, j] \leftarrow 1+c[i-1, j-1]$
elseif $c[i-1, j]>c[i, j-1]$
elseif $c[i-1, j]>c[i, j-1]$

else
$c[i, j] \leftarrow c[i-1, j]$
return $c[m, n]$

## The algorithm

```
LCS-Length(X,Y)
 1 m\leftarrowlength[X]
 2}n\leftarrowlength[Y
 3 c[0,0]\leftarrow0
 for }i\leftarrow1\mathrm{ to }
 c[i,0]\leftarrow0
 6 for j}\leftarrow1\mathrm{ to n
 c[0,j]}
 to m
 for }j\leftarrow1\mathrm{ to
 if }\mp@subsup{x}{i}{}=
 c[i,j]\leftarrow1+c[i-1,j-1]
 elseif c[i-1,j]>c[i,j-1]
 c[i,j]\leftarrowc[i-1,j]
 else
 c[i,j]\leftarrowc[i,j-1]
\(c[i, j] \leftarrow c[i, j-1]\)
```


## The algorithm

LCS－Length $(X, Y)$
$1 m \leftarrow$ length $[X]$
$2 \quad n \leftarrow$ length $[Y]$
$\begin{array}{ll}3 & c[0,0] \leftarrow 0 \\ 4 & \text { for } i \leftarrow 1\end{array}$
for $i \leftarrow \mathbf{1}$ to $m$
$c[i, 0] \leftarrow 0$
$c[i, 0] \leftarrow 0$
1 to $n$
$c[0, j]$
for $i \leftarrow 1$ to $m$
for $j \leftarrow 1$ to $n$

$$
\begin{array}{lc} 
& \text { if } x_{i}=y_{i} \\
c[i, j] \leftarrow 1+c[i-1, j-1] \\
1 & \text { elseif } c[i-1, j]>c[i, j-1] \\
2 & \\
3 & \text { else } \\
4 & c[i, j] \leftarrow c[i-1, j] \\
5 & \\
6 & \text { return cim. }] \\
& \\
\hline
\end{array}
$$

## The algorithm

LCS-Length $(X, Y)$
$1 \quad m \leftarrow$ length $[X]$
$2 \quad n \leftarrow$ length
$c[0,0] \leftarrow 0$
5 for $i \leftarrow 1$ to $m$
for $j \leftarrow 1$ to $n$
8 for $i \leftarrow 1$ to $m$
1 to $m$
for $j$
$j \leftarrow 1$ to $n$
if $x_{i}=$
if $x_{i}=y_{i}$
elseif $c[i-1, j]>c[i-1, j-1]$
$c[i-1, j]>c[i, j-1]$
$c[i, j] \leftarrow c[i-1, j]$
else
$c[i, j] \leftarrow c[i, j-1]$
return $c[m, n]$

## Running time?

```
LCS-LENGTH(X,Y)
 1
 n\leftarrowlength[Y
 c[0,0]\leftarrow0
 for }i\leftarrow1\mathrm{ to m
 c[i,0]\leftarrow0
 l lo n
 cc[0,j]\leftarrow
 1 to m
 for }j\leftarrow1\mathrm{ to }
 if }\mp@subsup{x}{i}{}=\mp@subsup{y}{i}{
 c[\mp@code{ci,j]\leftarrow1+c[i-1,j-1]}
 elseif c[i-1,j]>c[i,j-1]
 else
 c [i , j] \leftarrow c [i , j - 1]
 return c[m,n]
```


## Keeping track of the solution

Our LCS algorithm only calculated the length of the LCS between $X$ and $Y$
What if we wanted to know the actual sequence?

Keep track of this as well...

```
for i}\leftarrow1\mathrm{ to }
 lorlol
```

!::

$$
\operatorname{LCS}[i, j]=\left\{\begin{array}{cl}
1+L C S[i, j] & i \text { f } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$



