
4/4/13 

1 

Greedy algorithms 

David Kauchak 
cs302 

Spring 2013 

Administrative 

? 

Greedy algorithms 
What is a greedy algorithm? 
 
Algorithm that makes a local decision with the goal of 
creating a globally optimal solution 
 
Method for solving problems where optimal solutions can 
be defined in terms of optimal solutions to sub-problems 
 
What does this mean?  Where have we seen this before? 
 

Greedy vs. divide and conquer 
Divide and conquer 

To solve the general problem: 

Break into sum number of sub problems, solve: 

then possibly do a little work 



4/4/13 

2 

Greedy vs. divide and conquer 
Divide and conquer 

To solve the general problem: 

The solution to the general problem is solved with 
respect to solutions to sub-problems! 

Greedy vs. divide and conquer 
Greedy 

To solve the general problem: 

Pick a locally optimal solution and repeat 

Greedy vs. divide and conquer 
Greedy 

To solve the general problem: 

The solution to the general problem is solved with respect to 
solutions to sub-problems! 
 
Slightly different than divide and conquer 

Horn formula 

A horn formula is a set of implications and 
negative clauses: 

x⇒

y⇒

zux ⇒∧

zyx ∨∨



4/4/13 

3 

Goal 
Given a horn formula, determine if the formula is 
satisfiable, i.e. an assignment of true/false to the variables 
that is consistent with all of the implications/causes 

x⇒

y⇒

zux ⇒∧

zyx ∨∨

u   x   y   z 
0   1   1   0 

A greedy solution? 

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w   0 

x    0 

y    0 

z    0 

A greedy solution? 

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w   0 

x    1 

y    0 

z    0 

A greedy solution? 

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w   0 

x    1 

y    1 

z    0 



4/4/13 

4 

A greedy solution? 

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w   1 

x    1 

y    1 

z    0 

A greedy solution? 

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w   1 

x    1 

y    1 

z    0 

not satisfiable 

A greedy solution A greedy solution 

set all variables of 
the implications of 
the form “⇒x” to true 



4/4/13 

5 

A greedy solution 

if the all variables of 
the lhs of an 
implication are true, 
then set the rhs 
variable to true 

A greedy solution 

see if all of the 
negative clauses are 
satisfied 

Correctness of greedy solution 

Two parts: 
l  If our algorithm returns an assignment, is it a valid 

assignment? 
l  If our algorithm does not return an assignment, 

does an assignment exist? 

Correctness of greedy solution 
If our algorithm returns an assignment, is it a valid 
assignment? 



4/4/13 

6 

Correctness of greedy solution 
If our algorithm returns an assignment, is it a valid 
assignment? 

explicitly check all 
negative clauses 

Correctness of greedy solution 
If our algorithm returns an assignment, is it a valid 
assignment? 

don’t stop until all 
implications with all 
lhs elements true 
have rhs true 

Correctness of greedy solution 

If our algorithm does not return an 
assignment, does an assignment exist? 

Our algorithm is 
“stingy”.  It only 
sets those variables 
that have to be 
true. All others 
remain false. 

Running time? 

? 
n = number of 
variables 

m = number of 
formulas 



4/4/13 

7 

Running time? 

O(nm) 

n = number of 
variables 

m = number of 
formulas 

Data compression 
Given a file containing some data of a fixed alphabet Σ 
(e.g. A, B, C, D), we would like to pick a binary 
character code that minimizes the number of bits 
required to represent the data. 

A C A D A A D B … 0010100100100  … 

minimize the size of 
the encoded file 

Compression algorithms 

http://en.wikipedia.org/wiki/Lossless_data_compression 

Simplifying assumption: 
frequency only 

Assume that we only have character 
frequency information for a file 

A C A D A A D B … 

= 
Symbol Frequency 

A 
B 
C 
D 

70 
3 

20 
37 



4/4/13 

8 

Fixed length code 

Use ceil(log2|Σ|) bits for each character 

A =  
B =  
C =  
D =  

Fixed length code 

Use ceil(log2|Σ|) bits for each character 

A = 00 
B = 01 
C = 10 
D = 11 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

How many bits to 
encode the file? 

2 x 70 + 
2 x 3 + 
2 x 20 +  
2 x 37  = 

260 bits 

Fixed length code 

Use ceil(log2|Σ|) bits for each character 

A = 00 
B = 01 
C = 10 
D = 11 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Can we do better? 

2 x 70 + 
2 x 3 + 
2 x 20 +  
2 x 37  = 

260 bits 

Variable length code 

What about: 

A = 0 
B = 01 
C = 10 
D = 1 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

1 x 70 + 
2 x 3 + 
2 x 20 +  
1 x 37  = 

153 bits How many bits to 
encode the file? 



4/4/13 

9 

Decoding a file 

A = 0 
B = 01 
C = 10 
D = 1 

010100011010 

What characters does this 
sequence represent? 

Decoding a file 

A = 0 
B = 01 
C = 10 
D = 1 

010100011010 

What characters does this 
sequence represent? 

A D or B? 

Variable length code 

What about: 

A = 0 
B = 100 
C = 101 
D = 11 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Is it decodeable? 

Variable length code 

What about: 

A = 0 
B = 100 
C = 101 
D = 11 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

How many bits to 
encode the file? 

1 x 70 + 
3 x 3 + 
3 x 20 +  
2 x 37  = 

213 bits 
(18% reduction) 



4/4/13 

10 

Prefix codes 

A prefix code is a set of codes where no 
codeword is a prefix of any other codeword 

A = 0 
B = 100 
C = 101 
D = 11 

A = 0 
B = 01 
C = 10 
D = 1 

Prefix tree 
We can encode a prefix code using a full binary tree 
where each leaf represents an encoding of a symbol 

A = 0 
B = 100 
C = 101 
D = 11 

A 

B C 

D 

0 1 

Decoding using a prefix tree 
To decode, we traverse the graph until a leaf 
node is reached and output the symbol 

A = 0 
B = 100 
C = 101 
D = 11 

A 

B C 

D 

0 1 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 



4/4/13 

11 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B  A 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B  A  D 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B  A  D   C 



4/4/13 

12 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B  A  D   C A 

Decoding using a prefix tree 
Traverse the graph until a leaf node is reached 
and output the symbol 

A 

B C 

D 

0 1 
1000111010100 

B  A  D   C A  B 

Determining the cost of a file 

A 

B C 

D 

0 1 Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Determining the cost of a file 

A 

B C 

D 

0 1 Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 70 

3 20 

37 

∑ =
=

n

i i ifT
1

)depth()(cost



4/4/13 

13 

Determining the cost of a file 

A 

B C 

D 

0 1 Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 70 

3 20 

37 23 

60 

What if we label the internal nodes 
with the sum of the children? 

Determining the cost of a file 

A 

B C 

D 

0 1 Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 70 

3 20 

37 23 

60 

Cost is equal to the sum of the 
internal nodes and the leaf nodes 

Determining the cost of a file 

A 

B C 

D 

0 1 

70 

3 20 

37 23 

60 

60 times we see a prefix that 
starts with a 1 

of those, 37 times we see an 
additional 1 

the remaining 23 times we see 
an additional 0 

70 times we see a 0 by itself 

of these, 20 times we see a last 1 
and 3 times a last 0 

As we move down the tree, one bit 
gets read for every nonroot node 

A greedy algorithm? 
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes 
the number of bits?  

A 

B C 

D 

0 1 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 



4/4/13 

14 

A greedy algorithm? 
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes 
the number of bits?  

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Heap 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Heap 

B  3 
C  20 
D  37 
A  70 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Heap 

BC  23 
D  37 
A  70 

B C 

3 20 

23 

merging with this 
node will incur an 
additional cost of 23 



4/4/13 

15 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Heap 

BCD  60 
A   70 

B C 

3 20 

23 

D 

37 

60 

Symbol Frequency 
A 
B 
C 
D 

70 
3 

20 
37 

Heap 

ABCD 130 

B C 

3 20 

23 

D 

37 

60 

A 

70 

Is it correct? 
The algorithm selects the symbols with the two 
smallest frequencies first (call them f1 and f2) 

Is it correct? 
The algorithm selects the symbols with the two smallest 
frequencies first (call them f1 and f2) 
 
Consider a tree that did not do this (proof by contradiction): 

f1 

fi f2 

Is it optimal? 



4/4/13 

16 

Is it correct? 
The algorithm selects the symbols with the two smallest 
frequencies first (call them f1 and f2) 
 
Consider a tree that did not do this: 

f1 

fi f2 

fi 

f1 f2 

- frequencies don’t change 
- cost will decrease since  
f1 < fi 

contradiction 

∑ =
=

n

i i ifT
1

)depth()(cost

Runtime? 

1 call to MakeHeap 

2(n-1) calls ExtractMin 

n-1 calls Insert 

O(n log n) 

Non-optimal greedy algorithms 
All the greedy algorithms we’ve looked at so far 
give the optimal answer 

Some of the most common greedy algorithms 
generate good, but non-optimal solutions 

l  set cover 
l  clustering 
l  hill-climbing 
l  relaxation 

Knapsack problems:   
Greedy or not? 
0-1 Knapsack – A thief robbing a store finds n items 
worth v1, v2, .., vn dollars and weight w1, w2, …, wn 
pounds, where vi and wi are integers.  The thief can carry 
at most W pounds in the knapsack.  Which items should 
the thief take if he wants to maximize value. 
 
Fractional knapsack problem – Same as above, but the 
thief happens to be at the bulk section of the store and 
can carry fractional portions of the items.  For example, 
the thief could take 20% of item i for a weight of 0.2wi and 
a value of 0.2vi. 


