

Administrative

Assignment out today (back to the normal routine)

Midterm

Simple recursive solution

Enumerate all possible solutions and find which schedules the most activities

```
IntERValSchedule-RECuRSIVE(A)
1 if A={}
2 if A={
3 else
max = -\infty
    for all }a\in
        A'\leftarrowA minus a and all conflicting activites with }
        = IntervalSchedule-Recursive( }\mp@subsup{A}{}{\prime}\mathrm{ )
        if s> max
            max=s
    return 1+max
```


Simple recursive solution

Is it correct?

- max\{all possible solutions\}

Running time?

- O(n!)

Can we do better?

Dynamic programming (next class)

- $O\left(n^{2}\right)$

Greedy solution - Is there a way to repeatedly make local decisions?

- Key: we'd still like to end up with the optimal solution

```
IERvalSChedule-Recursive(A)
```

IERvalSChedule-Recursive(A)
if A={}
if A={}
return 0
return 0
max= -\infty
max= -\infty
for all }a\in
for all }a\in
A'\leftarrowA minus a and all conflicting activites with }
A'\leftarrowA minus a and all conflicting activites with }
= IntervalSchedule-Recursive(}\mp@subsup{A}{}{\prime}\mathrm{)
= IntervalSchedule-Recursive(}\mp@subsup{A}{}{\prime}\mathrm{)
if s>max
if s>max
n 1+max}=\mp@subsup{max=s}{m}{m
n 1+max}=\mp@subsup{max=s}{m}{m
s> max

```
        s> max
```

	O:8 Overview of a greedy approach Greedily pick an activity to schedule Add that activity to the answer Remove that activity and all conflicting activities. Call this A'. Repeat on A' until A' is empty

Is our greedy approach correct?

"Stays ahead" argument:
show that no matter what other solution someone provides you, the solution provided by your algorithm always "stays ahead", in that no other choice could do better

Calculating max conflicts
efficiently efficiently

Calculating max conflicts	
AllintervalScheduleCount (A) ```Sort the start and end times, call this X current }\leftarrow max}\leftarrow for }i\leftarrow1\mathrm{ to length[X] if }\mp@subsup{x}{i}{}\mathrm{ is a start node current + + else current - - if current > max max}\leftarrowcurren return max```	

Correctness?

We can do no better then the max number of conflicts. This exactly counts the max number of conflicts.

AllintervalScheduleCount(A)
Sort the start and end times, call this X
current $\leftarrow 0$
$\max \leftarrow 0$
for $i \leftarrow 1$ to length $[X]$
if x_{i} is a start node
current ++
else
if current $>\max$
return max

Runtime?

$O(2 n \log 2 n+n)=O(n \log n)$

```
AllIntervalScheduleCount(A)
    Sort the start and end times, call this X
    current \leftarrow0
    max}\leftarrow
    for }i\leftarrow1\mathrm{ to length[X]
    if }\mp@subsup{x}{i}{}\mathrm{ is a start node
            current + +
            else
            if current > max
            max}\leftarrow\mathrm{ current
return max
```


Horn formulas

Horn formulas are a particular form of boolean logic formulas

They are one approach to allow a program to do logical reasoning

Boolean variables: represent some event

- $x=$ the murder took place in the kitchen
- $y=$ the butler is innocent
- $z=$ the colonel was asleep at 8 pm
Implications
Left-hand side is an AND of any number of positive literals
Right-hand side is a single literal

$$
Z \wedge y \Longrightarrow x
$$

$x=$ the murder took place in the kitchen
$y=$ the butler is innocent
$z=$ the colonel was asleep at 8 pm
What does this implication mean in English?

Implications
Left-hand side is an AND of any number of positive literals
Right-hand side is a single literal
$\quad Z \wedge y \Longrightarrow x$
If the colonel was asleep at 8 pm and the butler is
innocent then the murder took place in the kitchen

Implications	$\because: \%$ $\because: 8$. $\because: 8$. $: \because:$
Left-hand side is an AND of any number of positive literals	
Right-hand side is a single literal	
$\begin{aligned} & x=\text { the m } \\ & y=\text { the bu } \\ & z=\text { the col } \end{aligned}$	
What does this implication mean in English?	

Implications	
Left-hand side is an AND of any number of positive literals	
Right-hand side is a single literal	
the murder took place in the kitchen	
$x=$ the murder took place in the kitchen $y=$ the butler is innocent	

Negative clauses	$\because: \%$ $\because: \%$ $\because \% \%$ $\vdots \%$
An OR of any number of negative literals $\bar{u} \vee \bar{t} \vee \bar{y}$ not every one is innocent	
$u=$ the constable is innocent $t=$ the colonel is innocent $\mathrm{y}=$ the butler is innocent	

Horn formula		
A horn formula is a negative clauses: $\begin{aligned} & \Rightarrow x \\ & \Rightarrow y \end{aligned}$	of implications $\begin{aligned} & x \wedge u \Rightarrow z \\ & \bar{x} \vee \bar{y} \vee \bar{z} \end{aligned}$	

Goal
Given a horn formula, determine if the formula is satisfiable, i.e. an assignment of truelfalse to the variables that is consistent with all of the implications/causes $\Rightarrow x \quad x$$\quad x \wedge y \Longrightarrow z$
$\Rightarrow y \quad \bar{x} \vee \bar{y} \vee \bar{z}$
$\mathrm{u} \times \mathrm{y} \quad \mathrm{z}$ not satifiable

Goal

Given a horn formula, determine if the formula is
satisfiable, i.e. an assignment of truelfalse to the variables
that is consistent with all of the implicationslcauses

$\Rightarrow x \quad x \wedge z \Rightarrow w \quad w \wedge y \wedge z \Rightarrow x$
$\Rightarrow x \Rightarrow y \quad x \wedge y \Rightarrow w \quad \bar{w} \vee \bar{x} \vee \bar{y}$
$?$
Goal

| Given a horn formula, determine if the formula is |
| :--- | :--- |
| satisfiable, i.e. an assignment of truelfalse to the variables |
| that is consistent with all of the implications/causes |

$x \wedge u \Longrightarrow z$

A greedy solution?

$$
\begin{array}{cl}
\Rightarrow x & x \wedge z \Longrightarrow w \\
w \wedge y \wedge z \Longrightarrow x \\
x \Rightarrow y & x \wedge y \Rightarrow w \\
\bar{w} \vee \bar{x} \vee \bar{y}
\end{array}
$$

w 0
x 1
y 0
z 0
A greedy solution?

::\%

$\Rightarrow x$
$x \wedge z \Rightarrow w$
$w \wedge y \wedge z \Rightarrow x$
$x \Rightarrow y$
$x \wedge y \Rightarrow w$
$\bar{w} \vee \bar{x} \vee \bar{y}$
w 0
x 1
y 1
z 0

A greedy solution

$\operatorname{Horn}(H)$

```
set all variables to false
2 for all implications i
if EmpTY(LHS (i))
            if Empty(LHS(i)) the implications of
        RHS}(i)\leftarrow\mathrm{ true the form " }=>\textrm{x}\mathrm{ " to true
changed }\leftarrow\mathrm{ true
    while changed
            changed }\leftarrow\mathrm{ false
            changed }\leftarrowf\mathrm{ false
                if LHS}(i)=\mathrm{ true and !RHS}(i)=tru
                RHS}(i)\leftarrowtru
                changed = true
    for all negative clauses c
            if c=false
return false
return true
```

```
A greedy solution
```

if the all variables of the lhs of an implication are true, then set the rhs variable to true
changed $=$ true

```
```

Horn(H)

```
Horn(H)
    set all variables to fals
    set all variables to fals
    for all implications }
    for all implications }
        if Empty(LHS(i))
        if Empty(LHS(i))
        RHS}(i)\leftarrowtru
        RHS}(i)\leftarrowtru
    changed }\leftarrow\mathrm{ true
    changed }\leftarrow\mathrm{ true
        changed }\leftarrow\mathrm{ false
        changed }\leftarrow\mathrm{ false
        for all implications
        for all implications
            if LHS}(i)=\mathrm{ true and !RHS}(i)=\mathrm{ true
            if LHS}(i)=\mathrm{ true and !RHS}(i)=\mathrm{ true
                RHS}(i)\leftarrowtru
                RHS}(i)\leftarrowtru
                changed = true
                changed = true
    for all negative clauses c
    for all negative clauses c
        if c=false
        if c=false
return false
return false
return true
```

return true

```

\section*{A greedy solution}
\(\operatorname{Horn}(H)\)
set all variables to false
for all implications \(i\)
if Empty(LHS \((i))\)
RHS \((i) \leftarrow\) true
changed \(\leftarrow\) true
while changed
changed \(\leftarrow\) false
for all implications \(i\)
if \(\operatorname{LHS}(i)=\) true and \(!\operatorname{RHS}(i)=\) true
RHS \((i) \leftarrow\) true
changed \(=\) true
for all negative clauses \(c\)
if \(c=\) false
return true
see if all of the negative clauses are satisfied

\section*{Correctness of greedy solution} \(\because \because\)
\(\because \because\)
\(\because\)
\(\because\)
Two parts:
- If our algorithm returns an assignment, is it a valid assignment?
- If our algorithm does not return an assignment, does an assignment exist?

\section*{Correctness of greedy solution}

If our algorithm returns an assignment, is it a valid assignment?
```

ORN(H)
set all variables to fabs
for all implications i
if EmpTY(LHS(i))
EMPTY(LHS(i))
5 changed \leftarrowtrue
changed }\leftarrow\mathrm{ false
for all implications :
if LHS (i) = true and !RHS(i)=true
RHS(i)\leftarrowtrue
for all negative clauses
if c=false
return true return false

```

\section*{Correctness of greedy solution}

If our algorithm returns an assignment, is it a valid assignment?
```

ORN(H)
set all variables to false
for all implications i
if Empty(LHS(i))
5 changed\leftarrowtrue
while changed
changed }\leftarrow\mathrm{ false
if inS (i)=true and !RHS}(i)=tru
RHS(i)\leftarrowtrue
changed = true
2 for all negative clauses
if c=false
15 return true
return false
explicitly check all
negative clauses

```

\section*{Correctness of greedy solution \\ :!: :}

If our algorithm returns an assignment, is it a valid assignment?
```

ORN(H)
set all variables to false
for all implications i
RHS(i)\leftarrowtrue
changed \leftarrowtrue
while changed
changed ז\leftarrowfalse
M implications with all
RHS(i)\leftarrowtrue lhs elements true
changed = true
for all negative clauses }
13 if if c=false
return true return false
return true
don't stop until all implications with all have rhs true

```

\section*{Correctness of greedy solution}

If our algorithm does not return an assignment, does an assignment exist?
```

RN(H
set all variables to false
for all implications i
if Empty(LhS(i))
RHS}(i)\leftarrowtr
changed \leftarrowtrue
changed }\leftarrowf\mathrm{ false
for all implications
if LHS (i)=true and !RHS}(i)=tru
remain false.
changed = true
for all negative clauses
if c=false
return true return false
Our algorithm is "stingy". It only sets those variables that have to be true. All others remain false.

```

\section*{Running time?}

Horn \((H)\)
1 set all variables to false
2 for all implications \(i\)
3 if \(\operatorname{Empty}(\operatorname{LHS}(i)\)
RHS \((i) \leftarrow\) true
6 while changed
changed \(\leftarrow\) false
for all implications
if \(\operatorname{LHS}(i)=\) true and \(!\operatorname{RHS}(i)=\) true
RHS \((i) \leftarrow\) true changed \(=\) true

\section*{for all negative clauses \(c\)}
if \(c=\) false
15 return true

\(\mathrm{n}=\) number of variables \(\mathrm{m}=\) number of formulas
\begin{tabular}{|c|c|}
\hline Running time? &  \\
\hline \multicolumn{2}{|l|}{\(\operatorname{Hors}(H)\)} \\
\hline ```
set all variables to false
for all implications i
    if Empty(LHS(i))
        RHS(i)}\leftarrowtru
``` & \\
\hline \begin{tabular}{|rl|}
5 & changed \(\leftarrow\) true \\
6 & while changed \\
7 & changed \(\leftarrow\) false \\
8 & for all implications \(i\) \\
9 & if \(\operatorname{LHS}(i)=\) true and \(!\operatorname{RHS}(i)=\) true \\
10 & RHS \((i) \leftarrow\) true \\
11 & changed \(=\) true
\end{tabular} & \begin{tabular}{l}
\(\mathrm{O}(\mathrm{nm})\) \\
\(\mathrm{n}=\) number of
\end{tabular} \\
\hline ```
12 for all negative clauses \(c\)
 if \(c=\) false
 return false
return true
``` & \begin{tabular}{l}
variables \\
\(\mathrm{m}=\) number of formulas
\end{tabular} \\
\hline
\end{tabular}

\section*{Knapsack problems: Greedy or not?}

0-1 Knapsack - A thief robbing a store finds \(n\) items worth \(\mathrm{v}_{1}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{n}}\) dollars and weight \(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\) pounds, where \(v_{i}\) and \(w_{i}\) are integers. The thief can carry at most \(W\) pounds in the knapsack. Which items should the thief take if he wants to maximize value.

Fractional knapsack problem - Same as above, but the thief happens to be at the bulk section of the store and can carry fractional portions of the items. For example, the thief could take \(20 \%\) of item \(i\) for a weight of \(0.2 \mathrm{w}_{\mathrm{i}}\) and a value of \(0.2 v_{i}\).```

