
3/14/13 

1 

B-Trees 

David Kauchak 
cs302 

Spring 2013 

Admin 
l  Homework 10 out today 
l  Midterm out Monday/Tuesday 

l  Available online 
l  2 hours 
l  Will need to return it to me within 3 hours of 

downloading 
l  Must take by Friday at 6pm 

l  Review on Tuesday 
l  E-mail if you have additional topics you’d like 

covered 

B-tree 
l  Defined by one parameter: t 
l  Balanced n-ary tree 
l  Each node contains between t-1 and 2t-1 keys/data 

values (i.e. multiple data values per tree node) 
l  keys/data are stored in sorted order 
l  one exception: root can have < t-1 keys 

l  Each internal node contains between t and 2t 
children 
l  the keys of a parent delimit the values of the children keys 
l  For example, if keyi = 15 and keyi+1 = 25 then child i + 1 

must have keys between 15 and 25 
l  all leaves have the same depth 

Example B-tree: t = 2 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 



3/14/13 

2 

Example B-tree: t = 2 

Balanced: all leaves have the same depth 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

Each node contains between t-1 and 2t – 1 
keys stored in increasing order 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

Each node contains between t and 2t children 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 



3/14/13 

3 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

When do we use B-trees over 
other balanced trees? 
B-trees are generally an on-disk data structure 

Memory is limited or there is a large amount of data to be 
stored 

In the extreme, only one node is kept in memory and the 
rest on disk 

Size of the nodes is often determined by a page size on 
disk.  Why? 

Databases frequently use B-trees 
 



3/14/13 

4 

Notes about B-trees 
Because t is generally large, the height of a B-tree is 
usually small 
 
t = 1001 with height 2, how many values can we have? 

Each node contains between t-1 and 2t-1 keys/data 
values (i.e. multiple data values per tree node) 

2001+2002 * 2001  + 2002*2002*2001 = 8,024,024,007 
  (over 8 billion keys!!!) 

root level 1 level 2 

Each internal node contains 
between t and 2t children 

Notes about B-trees 
Because t is generally large, the height of a B-tree 
is usually small 
 
We will count both run-time as well as the number 
of disk accesses. Why? 

Height of a B-tree 
B-trees have a similar feeling to BSTs 

We saw for BSTs that most of the operations depended on 
the height of the tree 

How can we bound the height of the tree? 

We know that nodes must have a minimum number of 
keys/data items (t-1) 

For a tree of height h, what is the smallest number of keys? 

Minimum number of nodes at 
each depth? 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

2 children 

2t children 

2th-1 children In general? 

1 root J 



3/14/13 

5 

Minimum number of keys/values 

∑ =

−−+≥
h

i
ittn

1
12)1(1

root 
min. keys  
per node 

min. number 
of nodes 

Minimum number of nodes 

∑ =

−−+≥
h

i
ittn

1
12)1(1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
−+=

1
1)1(21

t
tt
h

12 −= ht

2/)1( +≤ nth

2
)1(log +

≤
nh t

so, 

Searching B-Trees 
Find value k in B-Tree 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Searching B-Trees 

number of keys 

key[i] 

child[i] 

Find value k in B-Tree node x 



3/14/13 

6 

Searching B-Trees 

make disk reads 
explicit 

Searching B-Trees 

iterate through the sorted keys 
and find the correct location 

Searching B-Trees 

if we find the value 
in this node, return it 

Searching B-Trees 

if it’s a leaf and we didn’t 
find it, it’s not in the tree 



3/14/13 

7 

Searching B-Trees 

Recurse on the proper 
child where the value is 
between the keys 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

find the correct 
location 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 



3/14/13 

8 

Search example: R 

the value is not in 
this node 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

this is not a  
leaf node 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

find the correct 
location 



3/14/13 

9 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

not in this node and 
this is not a leaf 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

find the correct 
location 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 



3/14/13 

10 

Search running time 
How many calls to BTreeSearch? 

l  O(height of the tree) 
l  O(logtn) 

Disk accesses? 
l  One for each call – O(logtn) 

Computational time? 
l  O(t) keys per node 
l  linear search 
l  O(t logtn) 

Why not binary search to find key in a node? 

BST-Insert 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

B-Tree insert 
Starting at root, follow the search path down the tree 

l  If the node is full (contains 2t - 1 keys) 
l  split the keys into two nodes around the median value 
l   add the median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

 
Observations 

l  Insertions always happens in the leaves 
l  When does the height of a B-tree grow? 
l  Why do we know it’s always ok when we’re splitting a node 

to insert the median value into the parent? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  



3/14/13 

11 

Insertion: t = 2 

G 

G C N A H E K Q M F W L T Z D P R X Y S  

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G 

Insertion: t = 2 

C G N 

G C N A H E K Q M F W L T Z D P R X Y S  

Insertion: t = 2 

C G N 

G C N A H E K Q M F W L T Z D P R X Y S  

Node is full, so split 



3/14/13 

12 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

Node is full, so split G 

C N

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C N

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C N

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C H N 



3/14/13 

13 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C H N 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H N 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N 



3/14/13 

14 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N Node is full, so split 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E Node is full, so split H N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H N Q 



3/14/13 

15 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H M N Q 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H M N Q 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 



3/14/13 

16 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 

root is full, so split 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H M N Q E F 

root is full, so split G 

C K 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H M N Q E F node is full, so split 

G 

C K 



3/14/13 

17 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H E F node is full, so split 

G 

C K N 

M Q 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H E F 

G 

C K N 

M Q W 

Insertion: t = 2 
G C N A H E K Q M F W … 

A H E F 

G 

C K N 

M Q W 

Correctness of insert 
Starting at root, follow search path down the tree 

l  If the node is full (contains 2t - 1 keys), split the keys 
around the median value into two nodes and add the 
median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

Does it add the value in the correct spot? 
l  Follows the correct search path 
l  Inserts in correct position 

 



3/14/13 

18 

Correctness of insert 
Starting at root, follow search path down the tree 

l  If the node is full (contains 2t - 1 keys), split the keys 
around the median value into two nodes and add the 
median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

Do we maintain a proper B-tree? 
l  Maintain t-1 to 2t-1 keys per node? 

l  Always split full nodes when we see them 
l  Only split full nodes 

l  All leaves at the same level? 
l  Only add nodes at leaves 

Insert running time 

Without any splitting? 
l  Similar to BTreeSearch, with one extra disk write 

at the leaf 
l  O(logtn) disk accesses 
l  O(t logtn) computation time 

When a node is split 
How many disk accesses? 

l  3 disk write operations 
l  2 for the new nodes created by the split (one is reused, but 

must be updated) 
l  1 for the parent node to add median value 

Runtime to split a node? 
l  O(t) – iterating through the elements a few times since 

they’re already in sorted order 
 
Maximum number of nodes split for a call to insert? 

l  O(height of the tree) 

Running time of insert 

O(logtn) disk accesses 
 
O(t logtn) computational costs 



3/14/13 

19 

Deleting a node from a B-tree 
Similar to insertion 

l  must make sure we maintain B-tree properties (i.e. all leaves 
same depth and key/node restrictions) 

l  Proactively move a key from a child to a parent if the parent has 
t-1 keys 

O(logtn) disk accesses 
 
O(t logtn) computational costs 

Summary of operations 
Search, Insertion, Deletion 

l  disk accesses: O(logtn) 
l  computation: O(t logtn) 

Max, Min 
l  disk accesses: O(logtn) 
l  computation: O(logtn) 

Tree traversal 
l  disk accesses: if 2t ~ page size: O(minimum # pages to store data) 
l  Computation: O(n) 


