B-Trees	
David Kauchak $\begin{array}{r} \text { cs302 } \\ \text { Spring } 2013 \end{array}$	

Admin

- Homework 10 out today
- Midterm out Monday/Tuesday
- Available online
- 2 hours
- Will need to return it to me within 3 hours of downloading
- Must take by Friday at 6 pm
- Review on Tuesday
- E-mail if you have additional topics you'd like covered

B-tree

- Defined by one parameter: t
- Balanced n-ary tree
- Each node contains between $t-1$ and $2 t-1$ keys/data values (i.e. multiple data values per tree node)
- keys/data are stored in sorted order
- one exception: root can have <t-1 keys
- Each internal node contains between t and $2 t$ children
- the keys of a parent delimit the values of the children keys
- For example, if key $=15$ and key $_{\mathrm{i}+1}=25$ then child $i+1$ must have keys between 15 and 25
- all leaves have the same depth

Example B-tree: $\mathbf{t}=\mathbf{2}$

Example B-tree: $\mathbf{t = 2}$

Each node contains between $t-1$ and $2 t-1$ keys stored in increasing order

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child's keys can take

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child's keys can take

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child's keys can take

When do we use B-trees over other balanced trees?

B-trees are generally an on-disk data structure
Memory is limited or there is a large amount of data to be stored

In the extreme, only one node is kept in memory and the rest on disk

Size of the nodes is often determined by a page size on disk. Why?

Databases frequently use B-trees

Notes about B-trees	$\because: 8$ Because t is generally large, the height of a B-tree is usually small
We will count both run-time as well as the number of disk accesses. Why?	

Height of a B-tree

B-trees have a similar feeling to BSTs
We saw for BSTs that most of the operations depended on the height of the tree

How can we bound the height of the tree?

We know that nodes must have a minimum number of keys/data items (t-1)

For a tree of height h, what is the smallest number of keys?

Minimum number of nodes

$$
\begin{aligned}
n & \geq 1+(t-1) \sum_{i=1}^{n} 2 t^{t-1} \\
= & 1+2(t-1)\left(\frac{t^{h}-1}{t-1}\right) \\
& =2 t^{h}-1
\end{aligned} \text { so, } \begin{aligned}
& t^{h} \leq(n+1) / 2 \\
& h \leq \log _{t} \frac{(n+1)}{2}
\end{aligned}
$$

Searching B-Trees

Find value k in B -Tree node x

Searching B-Trees		$\because \because:$ $\because \because:$ $\because \because \%$ $\because \because \%$
```B-TreeSearch( }x,k i\leftarrow1 while}i\leqn(x)\mathrm{ and }k>\mp@subsup{K}{x}{}[i i\leftarrowi+1 if i\leqn(x) and k=\mp@subsup{K}{x}{}[i] return (x,i) if Leaf(x) 8 else```	make disk reads explicit	
9 DiskRead $\left(C_{x}[i]\right)$   10 return B-Treesearch $\left(C_{x}[i], k\right)$		




Searching B-Trees	
	if it's a leaf and we didn't find it, it's not in the tree


Searching B-Trees	
$\operatorname{B-TreESEARCH}(x, k)$ $\begin{array}{cc} 1 & i \leftarrow 1 \\ 2 & \text { while } i \leq n(x) \text { and } k>K_{x}[i] \\ 3 & i \leftarrow i+1 \\ 4 & \text { if } i \leq n(x) \text { and } k=K_{x}[i] \\ 5 & \text { return }(x, i) \\ 6 & \text { if Leaf }(x) \\ 7 & \text { return } \text { null } \\ \hline 8 & \text { else } \\ 9 & \\ 10 & \text { DiskRead }\left(C_{x}[i]\right) \\ \hline \end{array}$	Recurse on the proper child where the value is between the keys

## Search example: R



B-Treesearch $(x, k)$
1 iヶ1
${ }_{2}$ while $i \leq n(x)$ and $k>K_{x}[i]$
4 if $i \leq n(\varepsilon)+1+1=K_{x}$
5 return $(x, i)$
${ }_{7}^{6}$ if $\operatorname{LEAF}(x)$
8 else $\quad$ DiskRead $\left(C_{x}[i]\right)$
return B-Treesearch $\left(C_{x}[i], k\right)$


## Search example: R



B-Treesearch $(x, k)$

1	$i \leftarrow 1$
while $i \leq n(x)$ and $k>K_{x}[i]$	find the correct

$\frac{3}{4} \begin{gathered}i \leftarrow i+1 \\ 5\end{gathered}$
5 return $(x, i)$
${ }_{7}^{6}$ if LEAF $(x)$
8 else return null
${ }_{9}^{9} \quad \begin{aligned} & \text { DiskRead }\left(C_{x}[\text { lise })\right. \\ & 10\end{aligned}$
return B-TreeSearch $\left(C_{x}[i], k\right)$


## Search example: R



## Search example: R



B-Treesearch $(x, k)$
$\begin{array}{ll}1 & \text { while } i \leq n(x) \text { and } k>K_{x}[i] \quad \text { find the correct }\end{array}$ $3 \quad i \leftarrow i+1 \quad$ location
5 return $(x, i)$
${ }_{7}^{6}$ if LEAF $(x)$
8 else return null
$\begin{array}{cc}9 \\ 10 & \text { DiskRead }\left(C_{x}[i]\right) \\ \text { return B-TREES }\end{array}$


## Search example: R



## Search example: R



$$
\begin{aligned}
& \text { B-Treesearch }(x, k) \\
& 1 \quad i \leftarrow 1 \\
& \text { while } i \leq n(x) \text { and } k>K_{x}[i] \\
& \begin{array}{l}
3 \\
\hline 4 \text { if } i \leq n(x) \text { and } k=K_{x}[i] \\
\hline
\end{array} \\
& 5 \text { return }(x, i) \\
& \begin{array}{l}
6 \\
7 \\
7
\end{array} \text { if LEAF }(x) \text { return null } \\
& \begin{array}{ll}
8 & \text { else } \\
9 & \text { return null } \\
& \text { DiskRead }\left(C_{x}[\text { [ }]\right)
\end{array} \\
& \text { return B-TresSearch }\left(C_{x}[i], k\right)
\end{aligned}
$$




B-Tree insert
Starting at root, follow the search path down the tree
- If the node is full (contains $2 t-1$ keys)
- split the keys into two nodes around the median value
- If the node is a leaf, insert it into the correct spot
Observations
- Insertions always happens in the leaves
- When does the height of a B-tree grow?
to insert the median value into the parent?

Insertion: $\mathbf{t = 2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS

C G N Node is full, so split


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


## Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS

?


Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS
: : :
$\because: \quad$
:-
:8:



## Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS


## Correctness of insert

Starting at root, follow search path down the tree

- If the node is full (contains $2 t-1$ keys), split the keys around the median value into two nodes and add the median value to the parent node
- If the node is a leaf, insert it into the correct spot

Does it add the value in the correct spot?

- Follows the correct search path
- Inserts in correct position


## Correctness of insert

Starting at root, follow search path down the tree

- If the node is full (contains $2 t-1$ keys), split the keys around the median value into two nodes and add the median value to the parent node
- If the node is a leaf, insert it into the correct spot

Do we maintain a proper B-tree?

- Maintain $\mathrm{t}-1$ to $2 \mathrm{t}-1$ keys per node?
- Always split full nodes when we see them
- Only split full nodes
- All leaves at the same level?
- Only add nodes at leaves


## Insert running time

Without any splitting?

- Similar to BTreeSearch, with one extra disk write at the leaf
- O( $\left.\log _{\mathrm{t}} \mathrm{n}\right)$ disk accesses
- $O\left(t \log _{\mathrm{t}} \mathrm{n}\right)$ computation time


Deleting a node from a B-tree $\left\lvert\, \begin{aligned} & : 8: \% \\ & \vdots 8: 8 \\ & \vdots \because: \%\end{aligned}\right.$
Similar to insertion   - must make sure we maintain B-tree properties (i.e. all leaves same depth and key/node restrictions)   - Proactively move a key from a child to a parent if the parent has $\mathrm{t}-1$ keys
$\mathrm{O}\left(\log _{\mathrm{t}} \mathrm{n}\right)$ disk accesses
$\mathrm{O}\left(\mathrm{t} \log _{\mathrm{t}} \mathrm{n}\right)$ computational costs

## Summary of operations

Search, Insertion, Deletion

- disk accesses: O( $\left.\log _{\mathrm{t}} \mathrm{n}\right)$
- computation: O(t log.n)

Max, Min

- disk accesses: $\mathrm{O}\left(\log _{\mathrm{t}} \mathrm{n}\right)$
- computation: O(log.n)

Tree traversal

- disk accesses: if $2 \mathrm{t} \sim$ page size: O (minimum \# pages to store data)
- Computation: O(n)

