CS302 - Assignment 18

Due: Tuesday, April 30 at the beginning of class Hand-in method: paper

1. [13 points] Go with the flow

(a) [$\mathbf{2}$ points] Find the maximum flow f for the graph above and a minimum cut. Don't just state the max-flow value, but annotate the graph with the flow along each edge.
(b) [2 points] Draw the residual graph G_{F} at this maximum flow.
(c) [2 points] An edge of a network is called a bottleneck edge if increasing its capacity results in an increase in the maximum flow. List all of the bottleneck edges in the above network.
(d) [$\mathbf{2}$ points] Give a simple example (containing at most four nodes) of a valid flow network which has no bottleneck edges.
(e) [5 points] Describe clearly (or write pseudocode for) an efficient algorithm to identify all the bottleneck edges in a network. Hint: It may be useful to calculate the max-flow first. State your running time.
2. [4 points] Suppose someone gives you a solution to a max-flow problem on some network (you can assume whatever form is convenient for how the solution is represented). Describe an efficient algorithm to determine whether the solution is indeed a maximum flow solution. State your running time. You will be graded on efficiency.
3. [4 points] Determine wether the following statement is true or false. If false, give a counterexample. If true, give a brief (but concrete) explanation justifying the statement.
Given a flow network G, let (L, R) be a minimum capacity cut in the flow graph. If we increase the capacity of all of the edges in the graph by 1 , then (L, R) is still a minimum capacity cut in this new graph.
4. [4 points] 26.1-3 (pg. 713). Show $=$ prove :)
