

Number guessing game

- I'm thinking of a number between 1 and n
- You are trying to guess the answer
- For each guess, I' II tell you "correct", "higher" or "lower"
- Describe an algorithm that minimizes the number of guesses

- $\mbox{Median}(T)$ – return the median of the values in tree T

Search

- How do we find an element?
 - BSTSEARCH(x, k)1 if x = null or k = x
 - 2 return x
 - $\begin{array}{ll} 3 & \textbf{elseif } k < x \\ 4 & \textbf{return BSTSEARCH}(\text{LEFT}(\mathbf{x}), \mathbf{k}) \end{array}$
 - 5 else
 - 6 return BSTSEARCH(RIGHT(x), k)

Rı	Inning time	
BS	TINSERT(T, x)	
1	if $\operatorname{Root}(T) = null$	O(height of the tree)
2	$\operatorname{Root}(T) \leftarrow x$	
3	else	
4	$y \leftarrow \operatorname{Root}(T)$	
5	while $y \neq null$	
6	$prev \leftarrow y$	
7	if $x < y$	
8	$y \leftarrow \operatorname{LEFT}(y)$	
9	else	
10	$y \leftarrow \operatorname{Right}(y)$	
11	$PARENT(x) \leftarrow prev$	
12 13	if $x < prev$	
13	$LEFT(prev) \leftarrow x$ else	
14	RIGHT $(prev) \leftarrow x$	

TREEWALK(X)1 if $x \neq null$

2

3

4

print x

TREEWALK(LEFT(x))

TREEWALK(RIGHT(x))

Successor				
Successo	$\mathbf{R}(x)$			
	$\operatorname{HT}(x) \neq null$			
2	return BSTMIN(RIGHT(x))			
3 else				
4	$y \leftarrow \text{Parent}(x)$			
5	while $y \neq null$ and $x = \text{Right}(y)$			
6	$x \leftarrow y$			
7	$y \leftarrow \operatorname{Parent}(y)$			
8 return	y			

- Make sure that the trees remain balanced!
 - Red-black trees
 - AVL trees
 - 2-3-4 trees
 - ...
- B-trees

1		۲	۲		
1			۰	•	
		۰	٠		
1		٠	٠	•	
	ė ė	ė	ō.		
	ėė	÷	ė.		
1	1.5		é.		
I .					

B-tree

- Defined by one parameter: t
- Balanced n-ary tree
- Each node contains between t-1 and 2t-1 keys/data values (i.e. multiple data values per tree node)
 - keys/data are stored in sorted order
- one exception: root can have < t-1 keys
- Each internal node contains between t and 2t children
 - the keys of a parent **delimit** the values of the children keys For example, if key_i = 15 and key_{i+1} = 25 then child *i* + 1 must have keys between 15 and 25
- all leaves have the same depth

When do we use B-trees over other balanced trees?

- B-trees are generally an **on-disk** data structure
- Memory is limited or there is a large amount of data to be stored
- In the extreme, only one node is kept in memory and the rest on disk
- Size of the nodes is often determined by a page size on disk. Why?
- Databases frequently use B-trees

Notes about B-trees

- Because *t* is generally large, the height of a B-tree is usually small
 - *t* = 1001 with height 2 can have over one billion values
- We will count both run-time as well as the number of disk accesses. Why?

Height of a B-tree

- B-trees have a similar feeling to BSTs
- We saw for BSTs that most of the operations depended on the height of the tree
- How can we bound the height of the tree?
- We know that nodes must have a minimum number of keys/data items
- For a tree of height *h*, what is the smallest number of keys?

if we find the value

in this node, return it

Insertion: t = 2

GCNAHEKQMFWLTZDPRXYS

Correctness of insert

- Starting at root, follow search path down the tree
 - If the node is full (contains 2t 1 keys), split the keys around the median value into two nodes and add the median value to the parent node
 - If the node is a leaf, insert it into the correct spot
- Does it add the value in the correct spot?
 - Follows the correct search path
 - Inserts in correct position

Correctness of insert Starting at root, follow search path down the tree If the node is full (contains 2t - 1 keys), split the keys around the median value into two nodes and add the median value to the parent node If the node is a leaf, insert it into the correct spot Do we maintain a proper B-tree? Maintain t-1 to 2t-1 keys per node? Always split full nodes when we see them Only split full nodes

- All leaves at the same level?
- Only add nodes at leaves

Running time of insert

- O(log_tn) disk accesses
- O(t log_tn) computational costs

