

Administrative

- HW grading

Number guessing game

- I'm thinking of a number between 1 and n
- You are trying to guess the answer
- For each guess, l' ll tell you "correct", "higher" or "lower"
- Describe an algorithm that minimizes the number of guesses

Binary Search Trees

- BST - A binary tree where a parent's value is greater than all values in the left subtree and less than or equal to all the values in the right subtree

$$
\text { leftTree }(i)<i \leq \operatorname{rightTree}(i)
$$

- the left and right children are also binary trees
- Why not?

$$
\text { leftTree }(i) \leq i \leq \text { rightTree }(i)
$$

- Can be implemented with with pointers or an array

What else can we say?

$$
\operatorname{left}(i)<i \leq \operatorname{right}(i)
$$

- All elements to the left of a node are less than the

Operations

- Search(T,k) - Does value k exist in tree T
- Insert(T,k) - Insert value k into tree T
- Delete(T,x) - Delete node x from tree T
- Minimum (T) - What is the smallest value in the tree?
- Maximum $(T)-$ What is the largest value in the tree?
- Successor(T,x) - What is the next element in sorted order after x
- Predecessor(T,x) - What is the previous element in sorted order of x
- Median(T) - return the median of the values in tree T

Search

- How do we find an element?

```
BSTSEARCH}(x,k
if x=null or }k=
                return x
    elseif k<x
        return BSTSEARCH(LEFT(x), k)
    else
        return BSTSEARCH(RIGHT(x), k)
```

Finding an element
Search(T, 9)

$$
\operatorname{left}(i)<i \leq \operatorname{right}(i)
$$

$\operatorname{BSTSEARCH}(x, k)$
1 if $x=$ null or $k=x$
$\begin{array}{ll}2 & \text { ret } \\ 3 & \text { elseif } k<x\end{array}$
$\begin{array}{lll}4 & & \text { return } \operatorname{BSTSEARCh}(\operatorname{Left}(x), k) \\ 5 & \text { else } & \\ 6\end{array} \quad \begin{aligned} & \text { return } \operatorname{BSTSEARCH}(\operatorname{Right}(x), k)\end{aligned}$

Finding an element
Search(T, 9)

Running time of BST

- Worst case?
- O(height of the tree)
- Average case?
- O(height of the tree)
- Best case?
- O(1)

Height of the tree - Worst case height? - $\mathrm{n}-1$ - "the twig" - Best case height? - floor $\left(\log _{2} \mathrm{n}\right)$ - complete (or near complete) binary tree - Average case height? - Depends on two things: - the data - how we build the tree!	

BSTInSERT}(T,x
BSTInSERT}(T,x

Correctness

$\operatorname{BSTInsert}(T, x)$			
1	if Ro	$(T)=$ null	What happens
2		$\operatorname{Root}(T) \leftarrow x$	if it is a
3	else		if it is a
4		$y \leftarrow \operatorname{Root}(T)$	duplicate?
5		while $y \neq$ null	
6		prev $\leftarrow y$	
7		if $x<y$	
8	$y \leftarrow \operatorname{Left}(y)$		
9		else	
10	$y \leftarrow \operatorname{Right}(y)$		
11	$\operatorname{Parent}(x) \leftarrow p r e v$		
12	if $x<p r e v$		
13	$\operatorname{LEFT}(p r e v) \leftarrow x$		
14	else		
15		Right(pr	

Height of the tree

- Worst case: "the twig" - When will this happen?
BSTInsert(T, x)
BSTInsert(T, x)
if Root(T)=null
if Root(T)=null
2 Rоот(T)\leftarrowx
2 Rоот(T)\leftarrowx
Mse}\quady\leftarrow\operatorname{Root(T)
Mse}\quady\leftarrow\operatorname{Root(T)
while }y\not=\mathrm{ null
while }y\not=\mathrm{ null
prev
prev
if }x<
if }x<
else
else
PaRENT (x)\leftarrowprev
PaRENT (x)\leftarrowprev
ARENT (x)
ARENT (x)
prev
prev
else
else
RIGHT(prev)}\leftarrow
RIGHT(prev)}\leftarrow

Height of the tree

- Best case: "complete" - When will this happen?
$\operatorname{BSTInsert}(T, x)$

$$
\begin{array}{rl}
1 & \text { if } \operatorname{Root}(T)=\text { null } \\
2 & \operatorname{ROOT}(T) \leftarrow x \\
3 & \text { else } \\
4 & y \leftarrow \operatorname{Root}(T) \\
5 & \text { while } y \neq \text { null } \\
6 & \text { prev } \\
7 & \text { if } x<y \\
8 & \text { else } y \leftarrow \operatorname{LEFT}(y) \\
9 & y \leftarrow \operatorname{Right}(y) \\
10 & \operatorname{PaRENT}(x) \leftarrow \text { prev } \\
11 & \text { if } x<\text { prev } \\
12 & \text { LeFT }(\text { prev }) \leftarrow x \\
13 & \text { else } \\
14 & \operatorname{Right~}(\text { prev }) \leftarrow x \\
15 &
\end{array}
$$

Visiting all nodes

- In sorted order

Visiting all nodes

- In sorted order

Visiting all nodes

- In sorted order

Visiting all nodes

- In sorted order

Visiting all nodes in order	

Visiting all nodes in order	$\because: \%$ $\because: 8$. $\vdots \% \%$
InorderTreeWalk (x)I 1 if $x \neq$ null2 \quad InorderTreeWalk $(\operatorname{Left}(x))$.	
any operation	

Is it correct?

InorderTreewalk (x)
if $x \neq$ null
2 InorderTreewalk $(\operatorname{Left}(x))$
3 print x

4 InorderTreeWalk($\operatorname{Right}(x)$)

- Does it print out all of the nodes in sorted order?

$$
\operatorname{left}(i)<i \leq \operatorname{right}(i)
$$

Deletion: case 3

- Two children
- Will we always have a successor?
-Why successor?
- Case 1 or case 2 deletion
- Larger than the left subtree
- Less than or equal to right subtree

Height of the tree

- Most of the operations take time O(height of the tree)
- We said trees built from random data have height $O(\log n)$, which is asymptotically tight
- Two problems:
- We can't always insure random data
- What happens when we delete nodes and insert others after building a tree?

Balanced trees

- Make sure that the trees remain balanced!
- Red-black trees
- AVL trees
- 2-3-4 trees
- ...
- B-trees

B-tree

- Defined by one parameter: t
- Balanced n-ary tree
- Each node contains between $t-1$ and $2 t-1$ keys/data values (i.e. multiple data values per tree node)
- keys/data are stored in sorted order
- one exception: root can have <t-1 keys
- Each internal node contains between t and $2 t$ children
- the keys of a parent delimit the values of the children keys
- For example, if $\mathrm{key}_{\mathrm{i}}=15$ and $\mathrm{key}_{\mathrm{i}+1}=25$ then child $i+1$ must have keys between 15 and 25
- all leaves have the same depth

Example B-tree: $\mathbf{t = 2}$

Balanced: all leaves
have the same depth

Example B-tree: $\mathbf{t = 2}$

Each node contains between $t-1$ and $2 t-1$ keys stored in increasing order

Example B-tree: $\mathbf{t = 2}$

Each node contains between t and $2 t$ children

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child's keys can take

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child s keys can take

Example B-tree: $\mathbf{t = 2}$

The keys of a parent delimit the values that a child's keys can take

When do we use B-trees over other balanced trees?

- B-trees are generally an on-disk data structure
- Memory is limited or there is a large amount of data to be stored
- In the extreme, only one node is kept in memory and the rest on disk
- Size of the nodes is often determined by a page size on disk. Why?
- Databases frequently use B-trees

Height of a B-tree

- B-trees have a similar feeling to BSTs
- We saw for BSTs that most of the operations depended on the height of the tree
- How can we bound the height of the tree?
- We know that nodes must have a minimum number of keys/data items
- For a tree of height h, what is the smallest number of keys?

Notes about B-trees

- Because t is generally large, the height of a Btree is usually small
- $t=1001$ with height 2 can have over one billion values
- We will count both run-time as well as the number of disk accesses. Why?

	Notes about B-trees
- Because t is generally large, the height of a B-	
tree is usually small	
• $t=1001$ with height 2 can have over one billion values	
- We will count both run-time as well as the	
number of disk accesses. Why?	

(

Minimum number of nodes

$$
\begin{aligned}
& \begin{aligned}
n & \geq 1+(t-1) \sum_{i=1}^{h} 2 t^{i-1} \\
& =1+2(t-1)\left(\frac{t^{h}-1}{t-1}\right) \\
& =2 t^{h}-1
\end{aligned} \\
& \text { so, } \\
& t^{h} \leq(n+1) / 2 \\
& h \leq \log _{t} \frac{(n+1)}{2}
\end{aligned}
$$

Searching B-Trees	
B-Treesearch (x, k)	if it's a leaf and we didn' t find it, it's not in the tree

Searching B-Trees		
```B-Treesearch \((x, k)\) \(i \leftarrow 1\) while \(i \leq n(x)\) and \(k>K_{x}[i]\) \(i \leftarrow i+1\) if \(i \leq n(x)\) and \(k=K_{x}[i]\) return ( \(x, i\) ) if \(\operatorname{LEAF}(x)\) return null \begin{tabular}{\|ll	} \hline 8 & return null \\ \hline 8 & else \\ 10 & DiskRead \(\left(C_{x}[i]\right)\) \\ 10 & return B-TREESEARCH \(\left(C_{x}[i], k\right)\) \\ \hline \end{tabular}```	Recurse on the proper child where the value is between the keys



## Search example: R


6 if return $(x, i)$
7 else return null
$\begin{aligned} 8 & \text { else } \\ 9 & \text { DiskREAD }\left(C_{x}[i]\right) \\ 10 & \text { return B-TREBS }\end{aligned}$

## Search example: R



$$
\begin{aligned}
& \text { B-TreESEARCH }(x, k) \\
& 1 \quad i \leftarrow 1 \\
& 2 \text { while } i \leq n(x) \text { and } k>K_{x}[i] \\
& 3 \\
& \begin{array}{c}
i \leftarrow i+1 \\
\hline 4
\end{array} \text { if } i \leq n(x) \text { and } k=K_{x}[i] \\
& 5
\end{aligned}
$$



## Search example: R


5 return $(x, i)$
6 if Leaf $(x)$
8 else return null
$\begin{aligned} 9 & \text { DISKREAD }\left(C_{x}[i]\right) \\ 10 & \text { return B-TREESEARCH }\left(C_{x}[i], k\right)\end{aligned}$

## Search example: R


find the correc
find the correc
ocation
ocation

## Search example: R



B-TreeSearch $(x, k)$
$1 \quad i \leftarrow 1$
${ }_{3}$ while $i \leq n(x)$ and $k>K_{x}[i]$
5 return $(x, i)$ this is not a leaf
$\begin{array}{lc}6 & \text { if LEAF }(x) \\ 7 & \text { return null }\end{array}$
8
9 else $\quad$ DISKREAD $\left(C_{x}[i]\right)$
$i \leftarrow 1$
while $i \leq n(x)$ and $k>K_{x}$
if $i \leq n(x)$ and $k=K_{x}[i]$
${ }_{6}$ if return ( $x$,
8 else return null
$\begin{array}{cl}8 & \text { else } \\ 9 & \\ 10 & \text { DISKREAD }\left(C_{x}[i]\right) \\ \text { return }-\operatorname{TREESEARCH}\left(C_{x}[i], k\right)\end{array}$


5 return $(x, i)$
${ }_{6}^{6}$ if $\operatorname{LEAF}(x)$
8
8 else $\quad \begin{aligned} & \text { return null } \\ & D_{9} \\ & \text { Diskead }\left(C_{x}[i]\right)\end{aligned}$
return B-Treesearch $\left(C_{x}[i], k\right)$

## Search example: R



B-TreeSearch $(x, k)$

1	$i \leftarrow 1$
2	while $i \leq n(x)$ and $k>K_{x}[i]$
find the correc	

## Search running time

- How many calls to BTreeSearch?
- O(height of the tree)
- O( $\left.\log _{\mathrm{t}} \mathrm{n}\right)$
- Disk accesses?
- One for each call - O( $\left.\log _{\mathrm{r}} \mathrm{n}\right)$
- Computational time?
- O(t) keys per node


## B-Treesearch $(x, k)$

DiskRead $\left(C_{x}[i]\right.$
return B-TREE

- linear search
- O(t $\left.\log _{\mathrm{t}} \mathrm{n}\right)$
- Why not binary search to find key in a node?



## B－Tree insert

－Starting at root，follow the search path down the tree
－If the node is full（contains $2 t-1$ keys）
－split the keys into two nodes around the median value
－add the median value to the parent node
－If the node is a leaf，insert it into the correct spot
－Observations
－Insertions always happens in the leaves
－When does the height of a B－tree grow？
－Why do we know it＇s always ok when we＇re splitting a node to insert the median value into the parent？

Insertion： $\mathbf{t = 2}$   GCNAHEKQMFWLTZDPRXYS	

Insertion： $\mathbf{t = 2}$
GCNAHEKQMFWLTZDPRXYS
$\because:$
：ロ：
：日0
：日。

G
GCNAHEKQMFWLTZDPRXYS
C G

Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


$$
\mathrm{CGN}
$$

Node is full, so split


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS

?
$: \because$
:\#:
:日.
:०:


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS

?


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS



Insertion: $\mathbf{t}=\mathbf{2}$
GCNAHEKQMFWLTZDPRXYS


## Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS


Insertion: $\mathbf{t = 2}$
GCNAHEKQMFWLTZDPRXYS



## Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS


## Insertion: $\mathbf{t = 2}$

GCNAHEKQMFWLTZDPRXYS

node is full, so split


## Correctness of insert

－Starting at root，follow search path down the tree
－If the node is full（contains $2 t-1$ keys），split the keys around the median value into two nodes and add the median value to the parent node
－If the node is a leaf，insert it into the correct spot
－Does it add the value in the correct spot？
－Follows the correct search path
－Inserts in correct position

## Insertion： $\mathbf{t = 2}$

GCNAHEKQMFW．．


## Correctness of insert

－Starting at root，follow search path down the tree
－If the node is full（contains $2 t-1$ keys），split the keys around the median value into two nodes and add the median value to the parent node
－If the node is a leaf，insert it into the correct spot
－Do we maintain a proper B－tree？
－Maintain t－1 to 2t－1 keys per node？
－Always split full nodes when we see them
－Only split full nodes
－All leaves at the same level？
－Only add nodes at leaves

Insert running time   - Without any splitting?   - Similar to BTreeSearch, with one extra disk write at the leaf   - O( $\left.\log _{\mathrm{t}} \mathrm{n}\right)$ disk accesses   - $\mathrm{O}\left(\mathrm{t} \log _{\mathrm{t}} \mathrm{n}\right)$ computation time


When a node is split
- How many disk accesses?
- 3 disk write operations
. 2 for the new nodes created by the split (one is
reused, but must be updated)
- 1 for the parent node to add median value
- Runtime to split a node?
- O(t) - iterating through the elements a few times
since they're already in sorted order
- Maximum number of nodes split for a call to
insert?
O(height of the tree)


Running time of insert   - O( $\left.\log _{\mathrm{t}} \mathrm{n}\right)$ disk accesses   - $O\left(t \log _{\mathrm{t}} n\right)$ computational costs	

[^0]
## Summary of operations

- Search, Insertion, Deletion
- disk accesses: O(lognn)
- computation: O(t $\left.\log _{\mathrm{t}} \mathrm{n}\right)$
- Max, Min
- disk accesses: $\mathrm{O}\left(\log _{\mathrm{n}} \mathrm{n}\right)$
- computation: O(log n )
- Tree traversal
- disk accesses: if 2 t ~ page size: O (minimum \# pages to store data)
- Computation: $\mathrm{O}(\mathrm{n})$


[^0]:    Deleting a node from a B-tree

    - Similar to insertion
    - must make sure we maintain B-tree properties (i.e. all leaves same depth and key/node restrictions)
    - Proactively move a key from a child to a parent if the parent has t-1 keys
    - $O\left(\log _{\mathrm{t}} n\right)$ disk accesses
    - $O\left(t \log _{\mathrm{t}} n\right)$ computational costs

