

Binomial Heap

Binomial heap Vuillemin, 1978.
Sequence of binomial trees that satisfy binomial heap property:

each tree is min-heap ordered

- top level: full or empty binomial tree of order k
- which are empty or full is based on the number of

Binomial Heap: Properties

Runtime of max/min?

Binomial Heap: Union

How can we merge two binomial tree heaps of the same size ($\left.2^{\mathrm{k}}\right)$? - connect roots of H^{\prime} and $\mathrm{H}^{\prime \prime}$

- choose smaller key to be root of H

Runtime? $\quad \mathrm{O}(1)$

Binomial Heap: Union

What if they're not they're not the simple heaps of size 2^{k} ?

Binomial Heap: Union

Go through each tree size starting at 0 and merge as we go

\qquad

Binomial Heap: Union

Analogous to binary addition

Running time?

- Proportional to number of trees in root lists $2 \mathrm{O}\left(\log _{2} \mathrm{~N}\right)$
- O(log N)

Binomial Heap: Delete Min/Max

We can find the min/max in $\mathrm{O}(\log \mathrm{n})$.
How can we extract it?
Hint: B_{k} consists of
binomial trees:

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H .

- Find root x with \min key in root list of H , and delete
. $\mathrm{H}^{\prime} \leftarrow$ broken binomial trees
. H \leftarrow Union($\mathrm{H}^{\prime}, \mathrm{H}$)
Running time? $\mathrm{O}(\log \mathrm{N})$

Binomial Heap: Decrease Key

Just call Decrease-Key/Increase-Key of Heap
. Suppose x is in binomial tree B_{k}

- Bubble node x up the tree if x is too small

Running time: $\mathrm{O}(\log \mathrm{N})$

- Proportional to depth of node x
depth $=3$
H

(55)

Binomial Heap: Delete

Delete node \mathbf{x} in binomial heap H

- Decrease key of x to $-\infty$
- Delete min

Running time: $\mathrm{O}(\log \mathrm{N})$

Build-Heap

Call insert n times

Runtime? $O(n \log n)$
Can we get a tighter bound?
Build-Heap
Call insert n times
Consider inserting n numbers

- how many times will B_{0} be empty?
- how many times will we need to merge with B_{0} ?
- how many times will we need to merge with B_{1} ?
- how many times will we need to merge with B_{2} ?
- ...
- how many times will we need to merge with $\mathrm{B}_{\mathrm{log}_{\mathrm{n}} \text { ? }}$

Build-Heap

Call insert n times

Consider inserting n numbers	times	cost
- how many times will B_{0} be empty?	$\mathrm{n} / 2$	$\mathrm{O}(1)$
- how many times will we need to merge with B_{0} ?	$\mathrm{n} / 2$	$\mathrm{O}(1)$
- how many times will we need to merge with B_{1} ?	$\mathrm{n} / 4$	$\mathrm{O}(1)$
- how many times will we need to merge with B_{2} ?	$\mathrm{n} / 8$	$\mathrm{O}(1)$
- ..		
- how many times will we need to merge with $\mathrm{B}_{\mathrm{log}_{\mathrm{n}}}$? 1	$\mathrm{O}(1)$	

Fibonacci Heaps

Similar to binomial heap

A Fibonacci heap consists of a sequence of heaps

More flexible

. Heaps do not have to be binomial trees
More complicated ()

Heaps			
Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Bulld-Heap	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
Maximum	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
Extrac-Max	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
UNION	$\theta(n)$	$\Theta(\log n)$	$\theta(1)$
Increase-Element	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
(adapted from Figure 19.1, pg. 456 [1])			
Can we do better?			

