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Adapted from: 
Kevin Wayne 

Bk is a binomial tree Bk-1 with 
the addition of a left child with 
another binomial tree Bk-1 

Binomial Tree 

B0 B1 B2 B3 B4 

B1 

Bk-1 

Bk 

B2 
B0 

Number of nodes with 
respect to k? 

N(Bo) = 1 
N(Bk) = 2 N(Bk-1) = 2k 

Binomial Tree 

B0 B1 B2 B3 B4 

Height? 

H(Bo) = 1 
H(Bk) = 1 + H(Bk-1) = k 

B1 

Bk-1 

Bk 

B2 
B0 

Binomial Tree 

B0 B1 B2 B3 B4 

Degree of root node? 

k, each time we add another binomial tree 

B1 

Bk-1 

Bk 

B2 
B0 
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Binomial Tree 

B0 B1 B2 B3 B4 

What are the children of 
the root? 

k-1 binomial trees: 
Bk-1, Bk-2, …, B0 

B1 

Bk-1 

Bk 

B2 
B0 

Binomial Tree 

B4 

depth 2 

depth 3 

depth 4 

depth 0 

depth 1 

Why is it called a binomial tree? 

Binomial Tree 

Bk  has        nodes at depth i. 
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Binomial Heap 
Binomial heap  Vuillemin, 1978. 
Sequence of binomial trees that satisfy binomial heap 
property: 

– each tree is min-heap ordered 
–  top level: full or empty binomial tree of order k 
– which are empty or full is based on the number of 

elements 
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Binomial Heap 
Like our “Kauchak”-set data structure from last time, except 
binomial tree heaps instead of arrays 

B4 B0 B1 
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A0: [18] 
A1: [3, 7] 
A2: empty 
A3: empty 
A3: [6, 8, 29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55] 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

How many heaps? 

O(log n) – binary number representation 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

Where is the max/min? 

Must be one of the 
roots of the heaps 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

Runtime of max/min? 

O(log n) 



3/8/12 

4 

Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 
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37 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

Height? 

floor(log2 n) 
 - largest tree = Blog n 
 - height of that tree is log n 

Binomial Heap:  Union 
How can we merge two binomial tree heaps of the same size (2k)? 

–  connect roots of H' and H'' 
–  choose smaller key to be root of H  

H'' 
55 

45 32 

30 

24 
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48 31 17 

44 8 29 10 

6 

H' 

Runtime? O(1) 

Binomial Heap:  Union 
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What if they’re not they’re not the 
simple heaps of size 2k? 

Binomial Heap:  Union 

0 0 1 1 

1 0 0 1 + 

0 1 1 1 

1 1 
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19 + 7 = 26 
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Go through each tree size starting at 0 and merge as we go 
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Binomial Heap:  Union 
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Binomial Heap:  Union 
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Binomial Heap:  Union 

Analogous to binary addition 
 
Running time? 
  Proportional to number of trees in root lists 2 O(log2 N) 
  O(log N) 

0 0 1 1 
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0 1 1 1 
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Binomial Heap:  Delete Min/Max 

We can find the min/max in O(log n). 
How can we extract it? 

Hint: Bk consists of 
binomial trees: 
Bk-1, Bk-2, …, B0 
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Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 
  Find root x with min key in root list of H, and delete 
  H' ←  broken binomial trees 
  H  ←  Union(H', H) 
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Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 
  Find root x with min key in root list of H, and delete 
  H' ←  broken binomial trees 
  H  ←  Union(H', H) 

Running time?   
 
 

O(log N) 
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Binomial Heap:  Decrease Key 

Just call Decrease-Key/Increase-Key of Heap 
  Suppose x is in binomial tree Bk 
  Bubble node x up the tree if x is too small 

Running time:  O(log N) 
  Proportional to depth of node x 

depth = 3 

Binomial Heap:  Delete 

Delete node x in binomial heap H 
  Decrease key of x to -∞ 
  Delete min 

Running time:  O(log N) 
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Binomial Heap:  Insert 

Insert a new node x into binomial heap H 
  H' ←  MakeHeap(x) 
  H  ←  Union(H', H) 

Running time.  O(log N) 
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x 

H' 

Build-Heap 

Call insert n times 

Runtime? 

Can we get a tighter bound? 

O(n log n) 

Build-Heap 

Call insert n times 

Consider inserting n numbers 
  how many times will B0 be empty?  
  how many times will we need to merge with B0? 
  how many times will we need to merge with B1? 
  how many times will we need to merge with B2? 
  … 
  how many times will we need to merge with Blog n? 

times cost 

Build-Heap 

Call insert n times 

Consider inserting n numbers 
  how many times will B0 be empty?    n/2  O(1) 
  how many times will we need to merge with B0?   n/2  O(1) 
  how many times will we need to merge with B1?   n/4  O(1) 
  how many times will we need to merge with B2?   n/8  O(1) 
  … 
  how many times will we need to merge with Blog n? 1  O(1) 

times cost 

Runtime? Θ(n) 
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Heaps Fibonacci Heaps 
Similar to binomial heap 
•  A Fibonacci heap consists of a sequence of heaps 
More flexible 
•  Heaps do not have to be binomial trees 
More complicated J 
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Heaps 

Should you always use a Fibonacci heap? 

Heaps 

•  Extract-Max and Delete are O(n) worst case 
•  Constants can be large on some of the operations 
•  Complicated to implement 
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Heaps 

Can we do better? 


