
3/8/12

1

Binomial Tree

Bk-1

Bk-1

B0 Bk

B0 B1 B2 B3 B4

Adapted from:
Kevin Wayne

Bk is a binomial tree Bk-1 with
the addition of a left child with
another binomial tree Bk-1

Binomial Tree

B0 B1 B2 B3 B4

B1

Bk-1

Bk

B2
B0

Number of nodes with
respect to k?

N(Bo) = 1
N(Bk) = 2 N(Bk-1) = 2k

Binomial Tree

B0 B1 B2 B3 B4

Height?

H(Bo) = 1
H(Bk) = 1 + H(Bk-1) = k

B1

Bk-1

Bk

B2
B0

Binomial Tree

B0 B1 B2 B3 B4

Degree of root node?

k, each time we add another binomial tree

B1

Bk-1

Bk

B2
B0

3/8/12

2

Binomial Tree

B0 B1 B2 B3 B4

What are the children of
the root?

k-1 binomial trees:
Bk-1, Bk-2, …, B0

B1

Bk-1

Bk

B2
B0

Binomial Tree

B4

depth 2

depth 3

depth 4

depth 0

depth 1

Why is it called a binomial tree?

Binomial Tree

Bk has nodes at depth i.

B4

⎟
⎠

⎞
⎜
⎝

⎛
i
k

6
2
4

=⎟
⎠

⎞
⎜
⎝

⎛

depth 2

depth 3

depth 4

depth 0

depth 1

Binomial Heap
Binomial heap Vuillemin, 1978.
Sequence of binomial trees that satisfy binomial heap
property:

– each tree is min-heap ordered
–  top level: full or empty binomial tree of order k
– which are empty or full is based on the number of

elements

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

3/8/12

3

Binomial Heap
Like our “Kauchak”-set data structure from last time, except
binomial tree heaps instead of arrays

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

A0: [18]
A1: [3, 7]
A2: empty
A3: empty
A3: [6, 8, 29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55]

N = 19
trees = 3
height = 4
binary = 10011

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

How many heaps?

O(log n) – binary number representation

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Where is the max/min?

Must be one of the
roots of the heaps

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Runtime of max/min?

O(log n)

3/8/12

4

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Height?

floor(log2 n)
 - largest tree = Blog n
 - height of that tree is log n

Binomial Heap: Union
How can we merge two binomial tree heaps of the same size (2k)?

–  connect roots of H' and H''
–  choose smaller key to be root of H

H''
55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

H'

Runtime? O(1)

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

33 28

15

25

7 12

What if they’re not they’re not the
simple heaps of size 2k?

Binomial Heap: Union

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

Go through each tree size starting at 0 and merge as we go

3/8/12

5

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

25

37 7

3

18

12

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

12

+

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

18

12

3/8/12

6

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

18

12

Binomial Heap: Union

Analogous to binary addition

Running time?
  Proportional to number of trees in root lists 2 O(log2 N)
  O(log N)

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: Bk consists of
binomial trees:
Bk-1, Bk-2, …, B0

3/8/12

7

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
  Find root x with min key in root list of H, and delete
  H' ← broken binomial trees
  H ← Union(H', H)

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
  Find root x with min key in root list of H, and delete
  H' ← broken binomial trees
  H ← Union(H', H)

Running time?

O(log N)

3

37

6 18

55

x 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Decrease Key

Just call Decrease-Key/Increase-Key of Heap
  Suppose x is in binomial tree Bk
  Bubble node x up the tree if x is too small

Running time: O(log N)
  Proportional to depth of node x

depth = 3

Binomial Heap: Delete

Delete node x in binomial heap H
  Decrease key of x to -∞
  Delete min

Running time: O(log N)

3/8/12

8

Binomial Heap: Insert

Insert a new node x into binomial heap H
  H' ← MakeHeap(x)
  H ← Union(H', H)

Running time. O(log N)

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

x

H'

Build-Heap

Call insert n times

Runtime?

Can we get a tighter bound?

O(n log n)

Build-Heap

Call insert n times

Consider inserting n numbers
  how many times will B0 be empty?
  how many times will we need to merge with B0?
  how many times will we need to merge with B1?
  how many times will we need to merge with B2?
  …
  how many times will we need to merge with Blog n?

times cost

Build-Heap

Call insert n times

Consider inserting n numbers
  how many times will B0 be empty? n/2 O(1)
  how many times will we need to merge with B0? n/2 O(1)
  how many times will we need to merge with B1? n/4 O(1)
  how many times will we need to merge with B2? n/8 O(1)
  …
  how many times will we need to merge with Blog n? 1 O(1)

times cost

Runtime? Θ(n)

3/8/12

9

Heaps Fibonacci Heaps
Similar to binomial heap
•  A Fibonacci heap consists of a sequence of heaps
More flexible
•  Heaps do not have to be binomial trees
More complicated J

23 7
3

38 52 30 18

39 41

17

35

46 26

24

Min [H]

Heaps

Should you always use a Fibonacci heap?

Heaps

•  Extract-Max and Delete are O(n) worst case
•  Constants can be large on some of the operations
•  Complicated to implement

3/8/12

10

Heaps

Can we do better?

