
3/1/12

1

Order Statistics

David Kauchak
cs302

Spring 2012

Medians
l  The median of a set of numbers is the number such

that half of the numbers are larger and half smaller

l  How might we calculate the median of a set?
l  Sort the numbers, then pick the n/2 element

A = [50, 12, 1, 97, 30]

Medians
l  The median of a set of numbers is the number such

that half of the numbers are larger and half smaller

l  How might we calculate the median of a set?
l  Sort the numbers, then pick the n/2 element

A = [50, 12, 1, 97, 30]

A = [1, 12, 30, 50, 97]

runtime?

Medians
l  The median of a set of numbers is the number such

that half of the numbers are larger and half smaller

l  How might we calculate the median of a set?
l  Sort the numbers, then pick the n/2 element

A = [50, 12, 1, 97, 30]

A = [1, 12, 30, 50, 97]

Θ(n log n)

3/1/12

2

Selection

l  More general problem:
find the k-th smallest element in an array
l  i.e. element where exactly k-1 things are smaller

than it
l  aka the “selection” problem
l  can use this to find the median if we want

l  Can we solve this in a similar way?
l  Yes, sort the data and take the kth element
l  Θ(n log n)

Can we do better?
l  Are we doing more work than we need to?

l  To get the k-th element (or the median) by sorting, we’re
finding all the k-th elements at once

l  We just want the one!

l  Often when you find yourself doing more work than you
need to, there is a faster way (though not always)

selection problem

l  Our tools
l  divide and conquer
l  sorting algorithms
l  other functions

l  merge
l  partition

Partition
l  Partition takes Θ(n) time and performs a

similar operation
l  given an element A[q], Partition can be seen

as dividing the array into three sets:
l  < A[q]
l  = A[q]
l  > A[q]

l  Ideas?

3/1/12

3

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

If we called partition, what would be the in three sets?

< 5:

= 5:

> 5:

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

< 5: 2 2 1 3 2 1

= 5: 5 5 5

> 5: 34 9 17 34 18 6

Does this help us?

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

< 5: 2 2 1 3 2 1

= 5: 5 5 5

> 5: 34 9 17 34 18 6

We know the 5th smallest
has to be in this set

Selection: divide and conquer
l  Call partition

l  decide which of the three sets contains the answer
we’re looking for

l  recurse
l  Like binary search on unsorted data

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Return Selection(A, k, p, q-1)
 else // k > relq
 Return Selection(A, k-relq, q+1, r)

?

3/1/12

4

Selection: divide and conquer
l  Call partition

l  decide which of the three sets contains the answer
we’re looking for

l  recurse
l  Like binary search on unsorted data

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Return Selection(A, k, p, q-1)
 else // k > relq
 Return Selection(A, k-relq, q+1, r)

As we recurse, we
may update the k that
we’re looking for
because we update
the lower end

Selection: divide and conquer
l  Call partition

l  decide which of the three sets contains the answer
we’re looking for

l  recurse
l  Like binary search on unsorted data

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Return Selection(A, k, p, q-1)
 else // k > relq
 Return Selection(A, k-relq, q+1, r)

Partition returns the
absolute index, we want
an index relative to the
current p (window start)

5 7 1 4 8 3 2 6

Selection(A, 3, 1, 8)

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

1 2 3 4 5 6 7 8

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

5 1 4 3 2 6 8 7

Selection(A, 3, 1, 8)

relq = 6 – 1 + 1 = 6

1 2 3 4 5 6 7 8

3/1/12

5

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 3, 1, 8)

5 1 4 3 2 6 8 7
1 2 3 4 5 6 7 8

relq = 6 – 1 + 1 = 6

Selection(A, 3, 1, 5)

5 1 4 3 2 6 8 7

At each call, discard
part of the array

1 2 3 4 5 6 7 8

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 3, 1, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

relq = 2 – 1 + 1 = 2

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

3/1/12

6

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

relq = 5 – 3 + 1 = 3

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 4)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, 1, 3, 4)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

3/1/12

7

Selection(A, 1, 3, 4)

1 2 3 4 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, k, p, r)

 q <- Partition(A,p,r)
 relq = q-p+1
 if k = relq
 Return A[q]
 else if k < relq
 Selection(A, k, p, q-1)
 else // k > relq
 Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 4)

1 2 3 4 5 6 8 7
1 2 3 4 5 6 7 8

relq = 3 – 3 + 1 = 1

Running time of Selection?
l  Best case?
l  Each call to Partition throws away half the data

l  Recurrence?

l  O(n)

)()2/()(nnTnT Θ+=

Running time of Selection?
l  Worst case?
l  Each call to Partition only reduces our search by 1

l  Recurrence?

l  O(n2)

)()1()(nnTnT Θ+−=

3/1/12

8

Running time of Selection?
l  Worst case?
l  Each call to Partition only reduces our search by 1

l  When does this happen?
l  sorted
l  reverse sorted
l  others…

How can randomness help us?

RSelection(A, k, p, r)

 q <- RPartition(A,p,r)
 if k = q
 Return A[q]
 else if k < q
 Return Selection(A, k, p, q-1)
 else // k > q
 Return Selection(A, k, q+1, r)

Running time of RSelection?

l  Best case
l  O(n)

l  Worst case
l  Still O(n2)
l  As with Quicksort, we can get unlucky

l  Average case?

Average case
l  Depends on how much data we throw away

at each step

3/1/12

9

Average case
l  We’ll call a partition “good” if the pivot falls within within

the 25th and 75th percentile
l  a “good” partition throws away at least a quarter of the data
l  Or, each of the partitions contains at least 25% of the data

l  What is the probability of a “good” partition?

l  Half of the elements lie within this range and half
outside, so 50% chance

Average case

l  Recall, that like Quicksort, we can absorb the
cost of a number of “bad” partitions

Average case
l  On average, how many times will Partition need to

be called before be get a good partition?
l  Let E be the number of times
l  Recurrence:

EE
2
11+=

...
16
1

8
1

4
1

2
11 +++++=

2=

half the time we get a good
partition on the first try and half
of the time, we have to try again

Mathematicians and beer
An infinite number of
mathematicians walk into a bar.
The first one orders a beer. The
second orders half a beer. The
third, a quarter of a beer. The
bartender says "You're all idiots",
and pours two beers.

3/1/12

10

Average case
l  Another look. Let p be the probability of success
l  Let X be the number of calls required

E[X]=

∑
∞

=

−−
−

=
1

1)1(
1 j

jp
p
p

2

)1(
1 p

p
p
p −

−
=

p
1

=

p(1! p) j!1
j=1

"

#

Average case

l  If on average we can get a “good” partition
ever other time, what is the recurrence?
l  recall the pivot of a “good” partition falls in the 25th

and 75th percentile

)()4/3()(nOnTnT +=

roll in the cost of the
“bad” partitions

We throw away at
least ¼ of the data

Which is?

)()4/3()(nOnTnT +=

T (n) = T (3 / 4n)+!(n)

 a =
 b =
f(n) =

1
4/3
n

abnlog = n log4/31

= 1

is 1=O(n1!!)?
is 1="(n1)?
is 1=#(n1+!)?

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(n)

Average case running time!

3/1/12

11

An aside…

l  Notice a trend?

T (n) = T (n / 2)+!(n)

T (n) = T (3 / 4n)+!(n)

Θ(n)

Θ(n)

T (n) = T (pn)+ f (n)
for 0 < p <1 and
f (n)!"(1)

 a =
 b =
f(n) =

1
1/p
f(n)

abnlog = n log1/p1

= n

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(f(n))

