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Administrative 

l  Homework 3 
l  Homework 4 out today 

l  What does it do? 
l  A[r] is called the pivot 
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot 

and those > pivot 
l  Operates in place 
l  Final result: 

A

p pivot r 

≤ pivot > pivot 
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What’s happening? 

i j 
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≤ pivot > pivot unprocessed 
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Is Partition correct? 
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot 

and those > pivot? 

l  Loop Invariant: 

Is Partition correct? 
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot 

and those > pivot? 

l  Loop Invariant: A[p…i] ≤ A[r] and  
A[i+1…j-1] > A[r] 

Proof by induction 
l  Loop Invariant: A[p…i] ≤ A[r] and A[i+1…j-1] > A[r] 

l  Base case: A[p…i] and A[i+1…j-1] are empty 
l  Assume it holds for j -1 
l  two cases: 

l  A[j] > A[r] 
l  A[p…i] remains unchanged 
l  A[i+1…j] contains one additional element, A[j] which is  

> A[r] 
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Proof by induction 
l  Loop Invariant: A[p…i] ≤ A[r] and A[i+1…j-1] > A[r] 

l  2nd case: 
l  A[j] ≤ A[r] 

l  i is incremented 
l  A[i] swapped with A[j] – A[p…i] constains one additional 

element which is ≤ A[r] 
l  A[i+1…j-1] will contain the same elements, except the last 

element will be the old first element 

Partition running time? 

l Θ(n) 

Quicksort 

8  5  1  3  6  2  7  4 
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What happens here? 

1  2  3  4  5  8  7  6 1  2  3  4  5  8  7  6 
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1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8 

Some observations 

l  Divide and conquer:  different than 
MergeSort – do the work before recursing 

l  How many times is/can an element selected 
for as a pivot? 

l  What happens after an element is selected 
as a pivot? 

1  3  2  4  6  8  7  5 

Is Quicksort correct? 
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Is Quicksort correct? 
l  Assuming Partition is correct 
l  Proof by induction 

l  Base case: Quicksort works on a list of 1 element 
l  Inductive case: 

l  Assume Quicksort sorts arrays for arrays of smaller < n 
elements, show that it works to sort n elements 

l  If partition works correctly then we have: 
l  and, by our inductive assumption, we have: 

A

pivot 

≤ pivot > pivot 

sorted sorted 

Running time of Quicksort? 
l  Worst case? 
l  Each call to Partition splits the array into an empty 

array and n-1 array 

Quicksort: Worse case running 
time 

)()1()( nnTnT Θ+−=

Which is? Θ(n2) 

l  When does this happen? 
l  sorted 
l  reverse sorted 
l  near sorted/reverse sorted 

Quicksort best case? 

l  Each call to Partition splits the array into two 
equal parts 

l  O(n log n) 
l  When does this happen? 

l  random data? 
 

)()2/(2)( nnTnT Θ+=
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Quicksort Average case? 

l  How close to “even” splits do they need to be to 
maintain an O(n log n) running time? 

l  Say the Partition procedure always splits the array 
into some constant ratio b-to-a, e.g. 9-to-1 

l  What is the recurrence? 
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Level d:  

What is the depth of the tree? 
l  Leaves will have different heights 
l  Want to pick the deepest leave 
l  Assume a < b 

What is the depth of the tree? 

l  Assume a < b 

1=⎟
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ba+= log

Cost of the tree 

l  Cost of each level ≤ cn 

? 
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Cost of the tree 

l  Cost of each level ≤ cn 
l  Times the maximum depth 

l  Why not? 

)log( nnO
b
ba+

)log( nn
b
ba+Θ

Quicksort average case: take 2 
l  What would happen if half the time Partition produced 

a “bad” split and the other half “good”? 

cn 

“good” 50/50 split 
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Quicksort average case: take 2 
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Quicksort average case: take 2 
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recursion cost partition cost 
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Quicksort average case: take 2 
cn 

“good” 50/50 split 
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“bad” split 

We absorb the “bad” 
partition.  In general, we 
can absorb any constant 
number of “bad” 
partitions 

How can we avoid the worst 
case? 

l  Inject randomness into the data 

What is the running time of 
randomized Quicksort? 

l  Worst case? 

l  Still could get very unlucky and pick “bad” 
partitions at every step 

O(n2) 

randomized Quicksort: 
expected running time 
l  How many calls are made to Partition for an input of 

size n? 
l  What is the cost of a call to Partition? 
l  Cost is proportional to the number of iterations of the 

for loop 
the total number of 
comparisons will give 
us a bound on the 
running time 

n 



2/23/12 

18 

Counting the number of 
comparisons 

l  Let zi of z1, z2,…, zn be the i th smallest 
element 

l  Let Zij be the set of elements Zij= zi, zi+1,…, zj 
 
 A = [3, 9, 7, 2] 

z1 = 2 

z2 = 3 

z3 = 7 

z4 = 9 

Z24 = 

Counting the number of 
comparisons 

l  Let zi of z1, z2,…, zn be the i th smallest 
element 

l  Let Zij be the set of elements Zij= zi, zi+1,…, zj 
 
 A = [3, 9, 7, 2] 

z1 = 2 

z2 = 3 

z3 = 7 

z4 = 9 

Z24 = [3, 7, 9] 

Counting comparisons 

⎩
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  tocompared is  if1
}  tocompared is {Let ji
jiij

zz
zzIX

(indicator random variable) 

l  How many times can zi be compared to zj? 
l  At most once.  Why? 
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Counting comparisons: 
average running time 
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remember, 
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l  The pivot element separates the set of numbers into 
two sets (those less than the pivot and those larger).  
Elements from one set will never be compared to 
elements of the other set 

l  If a pivot x is chosen zi < x < zj then zi and zj how 
many times will zi and zj be compared? 

l  What is the only time that zi and zj will be 
compared? 

l  In Zij, when will zi and zj will be compared? 

}  tocompared is { ji zzp ? }  tocompared is { ji zzp ? 

} fromchosen pivot first  is or  {}  tocompared is { ijjiji Zzzpzzp =

+= } fromchosen pivot first  is { iji Zzp

} fromchosen pivot first  is { ijj Zzp
p(a,b) = p(a)+p(b) for 
independent events 
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Memory usage? 

l  Quicksort only uses O(1) additional memory 
l  How does randomized Quicksort compare to 

Mergesort? 
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 Merge-Sort: Another view  Merge-Sort: Another view 

difference? 

 Merge-Sort: Another view 
Merge-Sort2 

l  Running time? 
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Merge-Sort2 

l  Running time? 

l  Same as MergeSort except the cost to divide 
the arrays is constant, i.e. D(n) = c 

l  Still results in: 
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Memory? 
l  MergeSort 

l  MergeSort2 
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Memory? 

l  MergeSort 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnS

nc
nS ? 

Memory can be reused 

Memory can be reused Memory can be reused 



2/23/12 

23 

Memory can be reused Memory can be reused 

...8/4/2/)( +++++= nnnnnns

Memory? 
l  Both MergeSort and MergeSort2 are O(n) 

memory 
l  In general, we’re interested in maximum 

memory used 
l  MergeSort ~3n 
l  MergeSort2 ~2n 

l  We may also be interested in average 
memory usage 
l  MergeSort > MergeSort2 

MergeSort: Another view 

l  How difficult are the two versions to 
implement? 


