
2/23/12

1

Quicksort and
Randomized Algs

David Kauchak
cs302

Spring 2012

Administrative

l  Homework 3
l  Homework 4 out today

l  What does it do?
l  A[r] is called the pivot
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot

and those > pivot
l  Operates in place
l  Final result:

A

p pivot r

≤ pivot > pivot

2/23/12

2

… 5 7 1 2 8 4 3 6 …

p r

i

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 7 1 2 8 4 3 6 …

p r

2/23/12

3

i j

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 7 1 2 8 4 3 6 …

p r

2/23/12

4

i j

… 5 7 1 2 8 4 3 6 …

p r

i j

… 5 1 7 2 8 4 3 6 …

p r

i j

… 5 1 7 2 8 4 3 6 …

p r

i j

… 5 1 7 2 8 4 3 6 …

p r

2/23/12

5

i j

… 5 1 2 7 8 4 3 6 …

p r

i j

… 5 1 2 7 8 4 3 6 …

p r

i j

… 5 1 2 7 8 4 3 6 …

p r

What’s happening?

i j

… 5 1 2 7 8 4 3 6 …

p r

≤ pivot > pivot unprocessed

2/23/12

6

i j

… 5 1 2 7 8 4 3 6 …

p r

i j

… 5 1 2 4 8 7 3 6 …

p r

i j

… 5 1 2 4 3 7 8 6 …

p r

i j

… 5 1 2 4 3 6 8 7 …

p r

2/23/12

7

i j

… 5 1 2 4 3 6 8 7 …

p r

Is Partition correct?
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot

and those > pivot?

l  Loop Invariant:

Is Partition correct?
l  Partitions the elements A[p…r-1] in to two sets, those ≤ pivot

and those > pivot?

l  Loop Invariant: A[p…i] ≤ A[r] and
A[i+1…j-1] > A[r]

Proof by induction
l  Loop Invariant: A[p…i] ≤ A[r] and A[i+1…j-1] > A[r]

l  Base case: A[p…i] and A[i+1…j-1] are empty
l  Assume it holds for j -1
l  two cases:

l  A[j] > A[r]
l  A[p…i] remains unchanged
l  A[i+1…j] contains one additional element, A[j] which is

> A[r]

2/23/12

8

Proof by induction
l  Loop Invariant: A[p…i] ≤ A[r] and A[i+1…j-1] > A[r]

l  2nd case:
l  A[j] ≤ A[r]

l  i is incremented
l  A[i] swapped with A[j] – A[p…i] constains one additional

element which is ≤ A[r]
l  A[i+1…j-1] will contain the same elements, except the last

element will be the old first element

Partition running time?

l Θ(n)

Quicksort

8 5 1 3 6 2 7 4

2/23/12

9

8 5 1 3 6 2 7 4 1 3 2 4 6 8 7 5

1 3 2 4 6 8 7 5 1 3 2 4 6 8 7 5

2/23/12

10

1 2 3 4 6 8 7 5 1 2 3 4 6 8 7 5

1 2 3 4 6 8 7 5 1 2 3 4 6 8 7 5

2/23/12

11

1 2 3 4 6 8 7 5 1 2 3 4 5 8 7 6

What happens here?

1 2 3 4 5 8 7 6 1 2 3 4 5 8 7 6

2/23/12

12

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Some observations

l  Divide and conquer: different than
MergeSort – do the work before recursing

l  How many times is/can an element selected
for as a pivot?

l  What happens after an element is selected
as a pivot?

1 3 2 4 6 8 7 5

Is Quicksort correct?

2/23/12

13

Is Quicksort correct?
l  Assuming Partition is correct
l  Proof by induction

l  Base case: Quicksort works on a list of 1 element
l  Inductive case:

l  Assume Quicksort sorts arrays for arrays of smaller < n
elements, show that it works to sort n elements

l  If partition works correctly then we have:
l  and, by our inductive assumption, we have:

A

pivot

≤ pivot > pivot

sorted sorted

Running time of Quicksort?
l  Worst case?
l  Each call to Partition splits the array into an empty

array and n-1 array

Quicksort: Worse case running
time

)()1()(nnTnT Θ+−=

Which is? Θ(n2)

l  When does this happen?
l  sorted
l  reverse sorted
l  near sorted/reverse sorted

Quicksort best case?

l  Each call to Partition splits the array into two
equal parts

l  O(n log n)
l  When does this happen?

l  random data?

)()2/(2)(nnTnT Θ+=

2/23/12

14

Quicksort Average case?

l  How close to “even” splits do they need to be to
maintain an O(n log n) running time?

l  Say the Partition procedure always splits the array
into some constant ratio b-to-a, e.g. 9-to-1

l  What is the recurrence?

cnn
ba
bTn

ba
aTnT +⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

≤)(

cnn
ba
bTn

ba
aTnT +⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

≤)(

cn

)(n
ba
bT
+

)(n
ba
aT
+

cnn
ba
bTn

ba
aTnT +⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

≤)(

cn

cn
ba
b
+

cn
ba
a
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
n

ba
aT 2

2

)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
n

ba
abT 2)(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
n

ba
bT 2

2

)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
n

ba
abT 2)(

cnn
ba
bTn

ba
aTnT +⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

≤)(

cn

cn
ba
b
+

cn
ba
a
+

cn
ba
a

2

2

)(+
cn

ba
ab

2)(+
n

ba
b

2

2

)(+
n

ba
ab

2)(+

)
)(

(2

3

n
ba
aT
+

)
)(

(2

2

n
ba
baT

+
)

)(
(2

2

n
ba

abT
+

)
)(

(2

2

n
ba
baT

+
)

)(
(2

2

n
ba

abT
+

)
)(

(2

2

n
ba
baT

+
)

)(
(2

3

n
ba
bT
+

)
)(

(2

2

n
ba

abT
+

2/23/12

15

cnn
ba
bTn

ba
aTnT +⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

≤)(

Level 0: cn

Level 1: cn
ba
bcn

ba
acn =⎟

⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

=

Level 2: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= 2

2

222

2

)()()()(ba
bcn

ba
abcn

ba
abcn

ba
acn

cn
ba
bacn

ba
babacn =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

++
= 2

2

2

22

)(
)(

)(
2

Level 3: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+++
= 3

22

)(
)()(

ba
bbaabacn

cn
ba
babacn =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

++
= 3

2

)(
))((

cn
ba
bacn d

d

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
=

)(
)(

Level d:

What is the depth of the tree?
l  Leaves will have different heights
l  Want to pick the deepest leave
l  Assume a < b

What is the depth of the tree?

l  Assume a < b

1=⎟
⎠

⎞
⎜
⎝

⎛
+

n
ba
b d

…

nd
b
ba+= log

Cost of the tree

l  Cost of each level ≤ cn

?

2/23/12

16

Cost of the tree

l  Cost of each level ≤ cn
l  Times the maximum depth

l  Why not?

)log(nnO
b
ba+

)log(nn
b
ba+Θ

Quicksort average case: take 2
l  What would happen if half the time Partition produced

a “bad” split and the other half “good”?

cn

“good” 50/50 split

)()
2
1(2)(nnTnT Θ+

−
=

)
2
1(−nT)

2
1(−nT

Quicksort average case: take 2
cn

)1(T)1(−nT

“bad” split

Quicksort average case: take 2
cn

“good” 50/50 split

)1()()
2
1()1

2
1()1()(−Θ+Θ+

−
+−

−
+= nnnTnTTnT

)1(T)1(−nc

)1
2
1(−

−nT)
2
1(−nT

“bad” split

recursion cost partition cost

2/23/12

17

Quicksort average case: take 2
cn

“good” 50/50 split

)()
2
1()1

2
1()(nnTnTnT Θ+

−
+−

−
=

)1(T)1(−nc

)1
2
1(−

−nT)
2
1(−nT

“bad” split

We absorb the “bad”
partition. In general, we
can absorb any constant
number of “bad”
partitions

How can we avoid the worst
case?

l  Inject randomness into the data

What is the running time of
randomized Quicksort?

l  Worst case?

l  Still could get very unlucky and pick “bad”
partitions at every step

O(n2)

randomized Quicksort:
expected running time
l  How many calls are made to Partition for an input of

size n?
l  What is the cost of a call to Partition?
l  Cost is proportional to the number of iterations of the

for loop
the total number of
comparisons will give
us a bound on the
running time

n

2/23/12

18

Counting the number of
comparisons

l  Let zi of z1, z2,…, zn be the i th smallest
element

l  Let Zij be the set of elements Zij= zi, zi+1,…, zj

 A = [3, 9, 7, 2]

z1 = 2

z2 = 3

z3 = 7

z4 = 9

Z24 =

Counting the number of
comparisons

l  Let zi of z1, z2,…, zn be the i th smallest
element

l  Let Zij be the set of elements Zij= zi, zi+1,…, zj

 A = [3, 9, 7, 2]

z1 = 2

z2 = 3

z3 = 7

z4 = 9

Z24 = [3, 7, 9]

Counting comparisons

⎩
⎨
⎧

==
otherwise0

 tocompared is if1
} tocompared is {Let ji
jiij

zz
zzIX

(indicator random variable)

l  How many times can zi be compared to zj?
l  At most once. Why?

∑ ∑
−

= +=
=

1

1 1

n

i

n

ij ijXXTotal number of
comparisons

Counting comparisons:
average running time

[]∑ ∑
−

= +=
=

1

1 1
][n

i

n

ij ijXEXE

∑ ∑
−

= +=
=

1

1 1
][n

i

n

ij ijXE
expectation of sums is the sum of
expectations

∑ ∑
−

= +=
=

1

1 1
} tocompared is {n

i

n

ij ji zzp

⎩
⎨
⎧

==
otherwise0

 tocompared is if1
} tocompared is { ji
jiij

zz
zzIX

remember,

2/23/12

19

l  The pivot element separates the set of numbers into
two sets (those less than the pivot and those larger).
Elements from one set will never be compared to
elements of the other set

l  If a pivot x is chosen zi < x < zj then zi and zj how
many times will zi and zj be compared?

l  What is the only time that zi and zj will be
compared?

l  In Zij, when will zi and zj will be compared?

} tocompared is { ji zzp ? } tocompared is { ji zzp ?

} fromchosen pivot first is or {} tocompared is { ijjiji Zzzpzzp =

+= } fromchosen pivot first is { iji Zzp

} fromchosen pivot first is { ijj Zzp
p(a,b) = p(a)+p(b) for
independent events

11
1

11
1

+−
+

+−
=

jj
pivot is chosen
randomly over j-i+1
elements

11
2
+−

=
j

E[X] ?

∑ ∑
−

= += +−
=

1

1 1 1
2][n

i

n

ij ij
XE

∑ ∑
−

= += +
=

1

1 1 1
2n

i

n

ij k

∑ ∑
−

= +=
<

1

1 1

2n

i

n

ij k

∑
−

=
=

1

1
)(logn

i
nO

)log(nnO=

Let k = j-i

∑ =
=+=

n

k
nOOnk

1
)(log)1(ln/2

Memory usage?

l  Quicksort only uses O(1) additional memory
l  How does randomized Quicksort compare to

Mergesort?

2/23/12

20

 Merge-Sort: Another view Merge-Sort: Another view

difference?

 Merge-Sort: Another view
Merge-Sort2

l  Running time?

2/23/12

21

Merge-Sort2

l  Running time?

l  Same as MergeSort except the cost to divide
the arrays is constant, i.e. D(n) = c

l  Still results in:

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Memory?

Memory?
l  MergeSort

l  MergeSort2

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnS

nc
nS

⎩
⎨
⎧

=
otherwise

small is if
)(

cn
nc

nS

Memory?

l  MergeSort2

⎩
⎨
⎧

=
otherwise

small is if
)(

cn
nc

nS

2/23/12

22

Memory?

l  MergeSort

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnS

nc
nS ?

Memory can be reused

Memory can be reused Memory can be reused

2/23/12

23

Memory can be reused Memory can be reused

...8/4/2/)(+++++= nnnnnns

Memory?
l  Both MergeSort and MergeSort2 are O(n)

memory
l  In general, we’re interested in maximum

memory used
l  MergeSort ~3n
l  MergeSort2 ~2n

l  We may also be interested in average
memory usage
l  MergeSort > MergeSort2

MergeSort: Another view

l  How difficult are the two versions to
implement?

