

Administrative

• Homework 4 out today

• Homework 3

Quicksort: Worse case running time

$$T(n) = T(n-1) + \Theta(n)$$

Which is? $\Theta(n^2)$

- When does this happen?
 - sorted
 - reverse sorted
 - near sorted/reverse sorted

What is the running time of randomized Quicksort?

• Worst case?

O(n²)

 Still could get very unlucky and pick "bad" partitions at every step

- Let z_i of z₁, z₂,..., z_n be the *i* th smallest element
- Let Z_{ij} be the set of elements Z_{ij} = z_i , z_{i+1} ,..., z_j

- z₂ = 3 Z₂₄ =
- z₃ = 7
- z₄ = 9

- Let z_i of z₁, z₂,..., z_n be the *i* th smallest element
- Let Z_{ij} be the set of elements Z_{ij} = z_i , z_{i+1} ,..., z_j

Z₂₄ = [3, 7, 9]

- z₂ = 3
- z₃ = 7 z₄ = 9

Merge-Sort: Another view		Merge-Sort: Another view		
MERGE 1 if p 2 3 4	$\begin{array}{l} \text{E-SORT2}(A,p,r) \\ < r \\ q \leftarrow \lfloor (p+r)/2 \rfloor \\ \text{MERGE-SORT2}(A,p,q) \\ \text{MERGE-SORT2}(A,q+1,r) \end{array}$	MERGE-S 1 if p < 2 3 4	SORT2 (A, p, r) < r $q \leftarrow \lfloor (p+r)/2 \rfloor$ MERGE-SORT2 (A, p, q) MERGE-SORT2 $(A, q + 1, r)$	
	(-)[)]))	difference?	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 length[A]]

Merge-Sort: Another view		
MERGE2(A, p, q, r) 1 $n_1 \leftarrow q - n + 1$ \triangleright length of the left array	Merge-Sort2	
$\begin{array}{ccc} n_1 \leftarrow q & p + r & p \text{ length of the right array} \\ 2 & n_2 \leftarrow r - q & p \text{ length of the right array} \\ 3 & \text{create arrays } L[1n_1 + 1] \text{ and } R[1n_2 + 1] \\ 4 & \text{for } i \leftarrow 1 \text{ to } n_1 \end{array}$	Running time?	I
5 $L[i] \leftarrow A[p+i-1]$ 6 for $j \leftarrow 1$ to n_2		
$\begin{array}{ccc} 7 & R[j] \leftarrow A[q+j] \\ 8 & L[n_1+1] \leftarrow \infty \end{array}$		
9 $R[n_2+1] \leftarrow \infty$ 10 $i \leftarrow 1$		
$\begin{array}{c} 10 j \leftarrow 1 \\ 12 j \leftarrow 1 \\ 12 j \leftarrow 1 \end{array}$		
12 for $k \leftarrow p$ to r 13 if $L[i] \le R[j]$		
$\begin{array}{ccc} 14 & & A[k] \leftarrow L[i] \\ 15 & & i \leftarrow i+1 \end{array}$		
16 else $A[k] \leftarrow B[j]$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Memory?

 Both MergeSort and MergeSort2 are O(n) memory

- In general, we' re interested in maximum memory used
 - MergeSort ~3n
 - MergeSort2 ~2n
- We may also be interested in average memory usage
 - MergeSort > MergeSort2

