

Administrative

- Homework 3
- Homework 4 out today

```Partition \((A, p, r)\) \[ i \leftarrow p-1 \] \[ \text { for } j \leftarrow p \text { to } r-1 \] \[ \text { if } A[j] \leq A[r] \] \[ i \leftarrow i+1 \] \\ swap \(A[i+1]\) and \(A[r]\) \[ \text { swap } A[i] \text { and } A[j] \] \\ return \(i+1\)```   - What does it do?	









Is Partition correct?   - Partitions the elements $\mathrm{A}[\mathrm{p} . . \mathrm{r}-1]$ in to two sets, those $\leq$ pivot and those > pivot?   - Loop Invariant:	

## Is Partition correct?

- Partitions the elements $\mathrm{A}[\mathrm{p} . . \mathrm{r}-1]$ in to two sets, those $\leq$ pivot and those > pivot?
- Loop Invariant: A[p...i] $\leq A[r]$ and $A[i+1 \ldots j-1]>A[r]$


## Proof by induction

- Loop Invariant: $A[p \ldots i] \leq A[r]$ and $A[i+1 \ldots . . j-1]>A[r]$
- Base case: $A[p \ldots i]$ and $A[i+1 \ldots j-1]$ are empty
- Assume it holds for $j-1$
- two cases:
- $A[j]>A[r]$
- A[p...i] remains unchanged
- $A[i+1 \ldots j]$ contains one additional element, $A[j]$ which is $>\mathrm{A}[\mathrm{r}]$

Partition $(A, p, r)$
$1 \quad i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$
$3 \quad$ if $A[j] \leq A[r]$
$A[J] \leq A[r]$
swap $A[i]$ and $A[j]$
$A[i+1]$ and $A[r]$
return $i+1$
$1 \quad i \leftarrow p-1$
2 for $j \leftarrow p$ to $r-1$
if $A[j] \leq A[r]$
$\leftarrow i+1$
swap $A[i]$ and $A[j]$
swap $A[i+1]$ and $A[r]$
return $i+1$
Partition $(A, p, r)$

## Proof by induction

- Loop Invariant: $A[p \ldots i] \leq A[r]$ and $A[i+1 \ldots j-1]>A[r]$
- 2nd case:
- $A[j] \leq A[r]$
- $i$ is incremented
- $A[i]$ swapped with $A[j]$ - $A[p \ldots i]$ constains one additional element which is $\leq A[r]$
- $A[i+1 \ldots j-1]$ will contain the same elements, except the las element will be the old first element

Partition $(A, p, r)$
$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$
if $A[j] \leq A[r]$
$i \leftarrow i+1$
swap $A[i]$
swap $A[i+1]$ and $A[r]$
return $i+1$

## Partition running time?

- O(n)

```
Partition(A,p,r)
1 i\leftarrowp-1
for }j\leftarrowp\mathrm{ to }r-
if A[j]\leqA[r]
 i\leftarrowi+
 swap A[i] and A[j]
 swap }A[i+1]\mathrm{ and }A[r
 return i+1
```


## Quicksort

Quicksort $(A, p, r)$
1 if $p<r$
2 $\quad q \leftarrow \operatorname{Partition}(A, p, r)$

## Partition $(A, p, r)$

$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$

$$
\text { if } A[j] \leq A[r]
$$

$$
i \leftarrow i+1
$$

$$
\text { swap } A[i] \text { and } A[j]
$$

swap $A[i+1]$ and $A[r]$
return $i+1$






## Some observations

- Divide and conquer: different than MergeSort - do the work before recursing
- How many times is/can an element selected for as a pivot?
- What happens after an element is selected as a pivot?

13246875
Is Quicksort correct?
Is Quicksort correct?

- Assuming Partition is correct
- Proof by induction
- Base case: Quicksort works on a list of 1 element
- Inductive case:
- Assume Quicksort sorts arrays for arrays of smaller < n
elements, show that it works to sort n elements
- If partition works correctly then we have:
ond, by our inductive assumption, we have:


## Quicksort: Worse case running

``` time
\[
T(n)=T(n-1)+\Theta(n)
\]
Which is? \(\Theta\left(n^{2}\right)\)
-When does this happen?
- sorted
- reverse sorted
- near sorted/reverse sorted
```


## Running time of Quicksort?

- Worst case?
- Each call to Partition splits the array into an empty array and n-1 array



## Quicksort best case?

- Each call to Partition splits the array into two equal parts

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

- $O(n \log n)$
- When does this happen?
- random data?


## Quicksort Average case?

- How close to "even" splits do they need to be to maintain an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ running time?
- Say the Partition procedure always splits the array into some constant ratio b-to-a, e.g. 9-to-1
- What is the recurrence?

$$
T(n) \leq T\left(\frac{a}{a+b} n\right)+T\left(\frac{b}{a+b} n\right)+c n
$$





## Cost of the tree

- Cost of each level $\leq c n$
- Times the maximum depth

$$
O\left(n \log _{\frac{a+b}{b}} n\right)
$$

- Why not?

$$
\Theta\left(n \log _{\frac{a+b}{b}} n\right)
$$


Quicksort average case: take $2 \underbrace{T\left(\frac{n-1}{2}-1\right)}_{T(1)}$

## How can we avoid the worst case?

- Inject randomness into the data

Randomized-Partition $(A, p, r)$
$i \leftarrow \operatorname{Random}(p, r)$
swap $A[r]$ and $A[i]$
3 returnPartition $(A, p, r)$

## What is the running time of randomized Quicksort?

- Worst case?

$$
O\left(n^{2}\right)
$$

- Still could get very unlucky and pick "bad" partitions at every step


## randomized Quicksort: expected running time

- How many calls are made to Partition for an input of size $n$ ? $n$
- What is the cost of a call to Partition?
- Cost is proportional to the number of iterations of the for loop



## Counting the number of comparisons

- Let $z_{i}$ of $z_{1}, z_{2}, \ldots, z_{n}$ be the $i$ th smallest element
- Let $\mathrm{Z}_{\mathrm{ij}}$ be the set of elements $\mathrm{Z}_{\mathrm{ij}}=\mathrm{z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}+1}, \ldots, \mathrm{Z}_{\mathrm{j}}$

$$
A=[3,9,7,2]
$$

$z_{1}=2$
$\mathrm{z}_{2}=3 \quad \mathrm{Z}_{24}=$
$z_{3}=7$
$z_{4}=9$

## Counting the number of comparisons

- Let $\mathrm{z}_{\mathrm{i}}$ of $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ be the $i$ th smallest element
- Let $\mathrm{Z}_{\mathrm{ij}}$ be the set of elements $\mathrm{Z}_{\mathrm{ij}}=\mathrm{z}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}+1}, \ldots, \mathrm{z}_{\mathrm{j}}$

$$
A=[3,9,7,2]
$$

$$
\begin{array}{ll}
z_{1}=2 & \\
z_{2}=3 & Z_{24}=[3,7,9] \\
z_{3}=7 & \\
z_{4}=9 &
\end{array}
$$

## Counting comparisons

Let $X_{i j}=I\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}= \begin{cases}1 & \text { if } z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}$
$\quad$ (indicator random variable)

- How many times can $z_{i}$ be compared to $z_{j}$ ?
- At most once. Why?

Total number of
comparisons

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

## Counting comparisons: average running time

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad \begin{array}{l}
\text { expectation of sums is the sum of } \\
\text { expectations }
\end{array} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

remember,

$$
X_{i j}=I\left\{z_{i} \text { is compared to } z_{j}\right\}= \begin{cases}1 & \text { if } z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$$
p\left\{z_{i} \text { is compared to } z_{j}\right\} ?
$$

- The pivot element separates the set of numbers into two sets (those less than the pivot and those larger). Elements from one set will never be compared to elements of the other set
- If a pivot $x$ is chosen $z_{i}<x<z_{j}$ then $z_{i}$ and $z_{j}$ how many times will $z_{i}$ and $z_{j}$ be compared?
- What is the only time that $z_{i}$ and $z_{j}$ will be compared?
- In $Z_{i j}$, when will $z_{i}$ and $z_{j}$ will be compared?

$$
p\left\{z_{i} \text { is compared to } z_{j}\right\} \text { ? }
$$



$$
\begin{aligned}
& \qquad \begin{aligned}
& p\left\{z_{i} \text { is compared to } z_{j}\right\}= p\left\{z_{i} \text { or } z_{j} \text { is first pivot chosen from } Z_{i j}\right\} \\
&= p\left\{z_{i} \text { is first pivot chosen from } Z_{i j}\right\}+ \\
& \text { p(a,b) }=\mathrm{p}(\mathrm{a})+\mathrm{p}(\mathrm{~b}) \text { for } \\
& \text { independent events }
\end{aligned} \\
& \begin{array}{l}
\text { pivot is chosen } \\
\text { randomly over } j-i+1 \\
\text { elements }
\end{array} \\
& =\frac{1}{j-1+1}+\frac{1}{j-1+1} \\
& \\
& =\frac{2}{j-1+1}
\end{aligned}
$$



Merge-Sort: Another view   Merge-Sort2 $2(A, p, r)$ $\begin{array}{lll} 1 & \text { if } p<r & \\ 2 & & q \leftarrow\lfloor(\mathrm{p}+\mathrm{r}) / 2\rfloor \\ 3 & & \operatorname{MerGE}-\operatorname{Sort} 2(A, p, q) \\ 4 & & \operatorname{MERGE}-\operatorname{Sort2}(A, q+1, r) \\ 5 & & \operatorname{Merge} 2(A, p, q, r) \end{array}$	




Merge-Sort2   - Running time?	


Merge-Sort2   - Running time?   - Same as MergeSort except the cost to divide   the arrays is constant, i.e. $D(n)=c$
- Still results in:
$T(n)=\left\{\begin{array}{cc\|}c & \text { if } n \text { is small } \\ 2 T(n / 2)+c n & \text { otherwise }\end{array}\right.$
$\because: 8$






Memory?	
- Both MergeSort and MergeSort2 are O(n) memory   - In general, we' re interested in maximum memory used   - MergeSort $\sim 3 n$   - MergeSort2 ~2n   - We may also be interested in average memory usage   - MergeSort > MergeSort2	



