

Administrative

- Talk today
- Assignment 1
- for proofs by induction, make sure you make the steps clear:
- base case
- inductive case
- assumption (inductive hypothesis)
- what you're trying to prove
- proof
- Assignment 2?
- Assignment 3 out today
- Latex?
- My view on homework...

MergeSort: Merge

- Assuming L and R are sorted already, merge the two to create a single sorted array
$\operatorname{Merge}(L, R)$
1 create array B of length length $[L]+$ length $[R]$
$2 i \leftarrow 1$
$3 \quad j \leftarrow 1$
4 for $k \leftarrow 1$ to length $[B]$
if $j>$ length $[R]$ or $(i \leq l e n g t h[L]$ and $L[i] \leq R[j])$ $B[k] \leftarrow L[i]$
$i \leftarrow i+1$
else
$B[k] \leftarrow R[j]$
$j \leftarrow j+1$
return B

Merge-Sort - Running time? $T(n)=\left\{\begin{array}{cc} c & \text { if } n \text { is small } \\ 2 T(n / 2)+D(n)+C(n) & \text { otherwise } \end{array}\right.$	
$D(n)$: cost of splitting (dividing) the data $C(n)$: cost of merging/combining the data	

Merge-Sort

- Running time?
$T(n)=\left\{\begin{array}{cc|} & c \\ 2 T(n / 2)+D(n)+C(n) & \text { otherwise }\end{array}\right.$
$D(n):$ cost of splitting (dividing) the data - linear $\Theta(\mathrm{n})$
$C(n):$ cost of merging/combining the data $-\operatorname{linear} \Theta(\mathrm{n})$

Merge-Sort

- We can calculate the depth, by determining when the recursion gets to down to a small problem size, e.g. 1
- At each level, we divide by 2

$$
\begin{aligned}
\frac{n}{2^{d}} & =1 \\
2^{d} & =n \\
\log 2^{d} & =\log n \\
d \log 2 & =\log n \\
d & =\log _{2} n
\end{aligned}
$$

Merge-Sort $T(n)=\left\{\begin{array}{cc} c & \text { if } n \text { is small } \\ 2 T(n / 2)+c n & \text { otherwise } \end{array}\right.$ - Running time? - Each level costs cn - $\log n$ levels - $c n \log n=\Theta(n \log n)$	

Recurrence	$\because: \%$ - A function that is defined with respect to itself on smaller inputs
$T(n)=2 T(n / 2)+n$	
$T(n)=16 T(n / 4)+n$	
$T(n)=2 T(n-1)+n^{2}$	

Why are we interested in recurrences?

- Computational cost of divide and conquer algorithms

$$
T(n)=a T(n / b)+D(n)+C(n)
$$

- a subproblems of size n / b
- $D(n)$ the cost of dividing the data
- $C(n)$ the cost of recombining the subproblem solutions
- In general, the runtimes of most recursive algorithms can be expressed as recurrences

The challenge

- Recurrences are often easy to define because they mimic the structure of the program
- But... they do not directly express the computational cost, i.e. n, n^{2},
- We want to remove self-recurrence and find a more understandable form for the function

Three approaches

- Substitution method: when you have a good guess of the solution, prove that it's correct

Substitution method

- Guess the form of the solution
- Then prove it's correct by induction

$$
T(n)=T(n / 2)+d
$$

- Halves the input then constant amount of work

Guess?

Substitution method

- Guess the form of the solution
- Then prove it's correct by induction

$$
T(n)=T(n / 2)+d
$$

- Halves the input then constant amount of work
- Similar to binary search:

Guess: $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

Proof?	
$T(n)=T(n / 2)+d=O\left(\log _{2} n\right) ?$ Proof by induction! - Assume it's true for smaller $T(k)$ - prove that it's then true for current T(n)	

$$
T(n)=T(n / 2)+d
$$

- Assume $T(k)=O\left(\log _{2} k\right)$ for all $k<n$
- Show that $T(n)=O\left(\log _{2} n\right)$
- From our assumption, $T(n / 2)=O\left(\log _{2} n\right)$:

$$
O(g(n))=\left\{\begin{array}{ll}
f(n): & \begin{array}{l}
\text { there exists positive constants } c \text { and } n \text { such that } \\
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
\end{array}
\end{array}\right\}
$$

- From the definition of $O: T(n / 2) \leq c \log _{2}(n / 2)$

$$
T(n)=T(n / 2)+d
$$

- To prove that $T(n)=O\left(\log _{2} n\right)$ we need to identify the appropriate constants:
$O(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n \text { such that } \\ 0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right\}$
i.e. some constant c such that $T(n) \leq c \log _{2} n$

$$
\begin{aligned}
T(n) & =T(n / 2)+d \\
& \leq c \log _{2}(n / 2)+d \\
& \leq c \log _{2} n-c \log _{2} 2+d \\
\leq & c \log _{2} n-c+d \text { residual } \\
\leq & c \log _{2} n \\
& \text { if } c \geq d
\end{aligned}
$$

$$
T(n)=T(n-1)+n
$$

- Guess the solution?
- At each iteration, does a linear amount of work (i.e. iterate over the data) and reduces the size by one at each step
- $O\left(n^{2}\right)$
- Assume $T(k)=O\left(k^{2}\right)$ for all $k<n$
- again, this implies that $T(n-1) \leq c(n-1)^{2}$
- Show that $T(n)=O\left(n^{2}\right)$, i.e. $T(n) \leq c n^{2}$
$T(n)=T(n-1)+n$
$\leq c(n-1)^{2}+n$
$=c\left(n^{2}-2 n+1\right)+n$
$=c n^{2}-2 c n+c+n$ residual
$\leq c n^{2}$
if $-2 c n+c+n \leq 0$
$-2 c n+c \leq-n$
$c(-2 n+1) \leq-n$
$c \geq \frac{n}{2 n-1}$
which holds for any $c \geq 1$ for $n \geq 1$

For an inductive proof we need to show two things:

- Assuming it's true for $k<n$ show it's true for n
- Show that it holds for some base case
- What is the base case in our situation?

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n \text { is small } \\
T(n / 2)+d & \text { otherwise }
\end{array}\right.
$$

Base case?

$$
T(n)=2 T(n / 2)+n
$$

- Guess the solution?
- Recurses into 2 sub-problems that are half the size and performs some operation on all the elements
- $O(n \log n)$
- What if we guess wrong, e.g. $\mathrm{O}\left(n^{2}\right)$?
- Assume $T(k)=O\left(k^{2}\right)$ for all $k<n$
- again, this implies that $T(n / 2) \leq c(n / 2)^{2}$
- Show that $T(n)=O\left(n^{2}\right)$

$$
T(n)=2 T(n / 2)+n
$$

$$
T(n)=2 T(n / 2)+n
$$

- What if we guess wrong, e.g. $O(n)$?
- Assume $T(k)=O(k)$ for all $k<n$
- again, this implies that $T(n / 2) \leq c(n / 2)$
- Show that $T(n)=O(n)$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2 c n / 2+n \\
& =c n+n \\
& \leq c n
\end{aligned}
$$

factor of n so we can just roll it in?

$$
T(n)=2 T(n / 2)+n
$$

- Prove $T(n)=O\left(n \log _{2} n\right)$
- Assume $T(k)=O\left(k \log _{2} k\right)$ for all $k<n$
- again, this implies that $T(k)=c k \log _{2} k$
- Show that $T(n)=O\left(n \log _{2} n\right)$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2 c n / 2 \log (n / 2)+n \\
& \leq c n\left(\log _{2} n-\log _{2} 2\right)+n \\
& \left.\leq c n \log _{2} n-c n+n\right) \text { residual } \\
& \leq c n \log _{2} n \\
& \quad \text { if } c n \geq n, c>1
\end{aligned}
$$

Changing variables

$T(n)=2 T(\sqrt{n})+\log n$

- Guesses?
- We can do a variable change: let $m=\log _{2} n$ (or $n=2^{m}$)

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

- Now, let $S(m)=T\left(2^{m}\right)$

$$
S(m)=2 S(m / 2)+m
$$

Changing variables

$S(m)=2 T(m / 2)+m$

- Guess? $\quad S(m)=O(m \log m)$

$$
T(n)=T\left(2^{m}\right)=S(m)=O(m \log m)
$$

substituting $m=\log n$
$T(n)=O(\log n \log \log n)$

Recursion Tree

- Guessing the answer can be difficult

$$
\begin{aligned}
& T(n)=3 T(n / 4)+n^{2} \\
& T(n)=T(n / 3)+2 T(2 n / 3)+c n
\end{aligned}
$$

- The recursion tree approach
- Draw out the cost of the tree at each level of recursion
- Sum up the cost of the levels of the tree
- Find the cost of each level with respect to the depth
- Figure out the depth of the tree
- Figure out (or bound) the number of leaves
- Verify your answer using the substitution method

Total cost

$$
T(n)=c n^{2}+\frac{3}{16} c n^{2}+\left(\frac{3}{16}\right)^{2} c n^{2}+\ldots+\left(\frac{3}{16}\right)^{d-1} c n^{2}+\Theta\left(3^{\log _{4} n}\right)
$$

$=c n^{2} \sum_{i=0}^{\log _{n} n-1}\left(\frac{3}{16}\right)^{i}+\Theta\left(3^{\log _{s} n}\right)$
$<c n^{2} \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i}+\Theta\left(3^{\log _{4} n}\right)$
$=\frac{1}{1-(3 / 16)} \mathrm{cn}^{2}+\Theta\left(3^{\log _{4} n}\right)$

$=\frac{16}{13} c n^{2}+\Theta\left(3^{\log _{4} n}\right) ?$
Total cost $\quad T(n)=\frac{16}{13} c n^{2}+\Theta\left(3^{\log _{4} n}\right)$
$3^{\log _{4} n}=4^{\log _{4} 3^{\log _{4} n}}$
$=4^{\log _{4} n \log _{4} 3}$
$=4^{\log _{4} 7^{\log _{4} 3}}$
$=n^{\log _{4} 3}$
$T(n)=\frac{16}{13} c n^{2}+\Theta\left(n^{\log _{4} 3}\right)$
$T(n)=O\left(n^{2}\right)$

Verify solution using substitution

$$
T(n)=3 T(n / 4)+n^{2}
$$

$$
T(n)=3 T(n / 4)+n^{2}
$$

- To prove that Show that $T(n)=O\left(n^{2}\right)$ we need to identify the appropriate constants:
$O(g(n))=\left\{f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\right\}$ i.e. some constant c such that $T(n) \leq c n^{2}$
- Show that $T(n)=O\left(n^{2}\right)$
- Given that $T(n / 4)=O\left((n / 4)^{2}\right)$, then

$$
O(g(n))=\left\{f(n): \begin{array}{l}
\text { there exists positive constants } c \text { and } n \text { such that } \\
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
\end{array}\right\}
$$

- $T(n / 4) \leq c(n / 4)^{2}$

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n^{2} \\
& \leq 3 c(n / 4)^{2}+n^{2} \\
& =c n^{2} 3 / 16+n^{2} \\
& \leq c n^{2} \\
\text { if } & \quad c \geq \frac{16}{13}
\end{aligned}
$$

Master Method	$\because: 8$ - Provides solutions to the recurrences of the form: $T(n)=a T(n / b)+f(n)$ if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$

$$
\begin{aligned}
& T(n)=16 T(n / 4)+n \\
& \text { then } T(n)=\Theta(f(n)) \\
& a=16 \\
& b=4 \\
& n^{\log _{b} a}=n^{\log _{4} 16} \\
& f(n)=n \\
& =n^{2}
\end{aligned}
$$

is $n=O\left(n^{2-\varepsilon}\right)$?
is $n=\Theta\left(n^{2}\right)$?
Case 1: $\Theta\left(n^{2}\right)$
is $n=\Omega\left(n^{2+\varepsilon}\right)$?

$\begin{aligned} & T(n)=T(n / 2)+2^{n} \\ & \text { if } f(n)=O\left(n^{\log _{g_{2} \alpha-\varepsilon}}\right) \text { for } \varepsilon>0, \text { then } T(n)=\Theta\left(n^{\log _{\alpha} a}\right) \\ & \text { if } f(n)=\Theta\left(n^{\log _{g} \alpha}\right) \text {, then } T(n)=\Theta\left(n^{\log _{\alpha} a} \log n\right) \\ & \text { if } f(n)=\Omega\left(n^{\log _{g} \alpha+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\ & \text { then } T(n)=\Theta(f(n)) \end{aligned}$: $\because: \%$
$\begin{aligned} \mathrm{a} & =1 & n^{\log _{b} a} & =n^{\log _{2} 1} \\ \mathrm{~b} & =2 & & =n^{0} \\ f(n) & =2^{n} & & =2 \end{aligned}$	
is $2^{n}=O\left(n^{0-\varepsilon}\right)$? Case 3? is $2^{n}=\Theta\left(n^{0}\right)$? is $2^{n / 2} \leq c 2^{n}$ for $c<1$? is $2^{n}=\Omega\left(n^{0+\varepsilon}\right)$?	

$$
\begin{aligned}
& T(n)=16 T(n / 4)+n! \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { then } T(n)=\Theta(f(n)) \\
& a=16 \\
& \text { b }=4 \\
& n^{\log _{b} a}=n^{\log _{4} 16} \\
& f(n)=n! \\
& =n^{2}
\end{aligned}
$$

is $n!=O\left(n^{2-\varepsilon}\right)$?
Case 3?
is $n!=\Theta\left(n^{2}\right)$?
is $16(n / 4)!\leq c n!$ for $c<1$?
is $n!=\Omega\left(n^{2+\varepsilon}\right)$?

$$
\begin{aligned}
& T(n)=16 T(n / 4)+n! \\
& \text { if } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \text { for } \varepsilon>0 \text {, then } T(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { if } f(n)=\Omega\left(n^{\log _{a} a+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\
& \text { then } T(n)=\Theta(f(n))
\end{aligned}
$$

is $16(n / 4)$! $\leq c n!$ for $c<1$?

$$
\begin{aligned}
& \text { Let } \mathrm{c}=1 / 2 \\
& \qquad \begin{aligned}
c n! & =1 / 2 n! \\
\quad> & (n / 2)!
\end{aligned} \\
& \text { therefore, } \\
& \quad 16(n / 4)!\leq(n / 2)!<1 / 2 n!
\end{aligned}
$$

$$
\text { is } \log n=O\left(n^{1 / 2-\varepsilon}\right) ?
$$

$$
\text { is } \log n=\Theta\left(n^{1 / 2}\right) ?
$$

Case 1: $\Theta(\sqrt{n})$
is $\log n=\Omega\left(n^{1 / 2+\varepsilon}\right)$?

$T(n)=4 T(n / 2)+n$

if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)=\Omega\left(n^{\log _{s} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$
$a=4$
$b=2$
$f(n)=n$
$n^{\log _{b} a}=n^{\log _{2} 4}$
$=n^{2}$
is $n=O\left(n^{2-\varepsilon}\right)$?
is $n=\Theta\left(n^{2}\right)$?
Case 1: $\Theta\left(n^{2}\right)$
is $n=\Omega\left(n^{2+\varepsilon}\right)$?

Why does the master method work?

$$
\begin{aligned}
& T(n)=\sqrt{2} T(n / 2)+\log n \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { then } T(n)=\Theta(f(n)) \\
& \mathrm{a}=\sqrt{2} \quad n^{\log _{b} a}=n^{\log _{2} \sqrt{2}} \\
& \mathrm{~b}=2 \\
& =n^{\log _{2} 2^{1 / 2}} \\
& f(n)=\log n \\
& =\sqrt{n}
\end{aligned}
$$

Don't shoot the messenger

- Why do we care about substitution method and recurrence tree method? Master method is much easier.

$$
T(n)=T(n / 3)+2 T(2 n / 3)+c n
$$

- Some recurrences don't fit the mold!

Other forms of the master method
$T(n)=a T(n / b)+O\left(n^{d}\right)$
$T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}$

