

Strings

- Let Σ be an alphabet, e.g. Σ = (, a, b, c, ..., z)
- A string is any member of Σ*, i.e. any sequence of 0 or more members of Σ
 - 'this is a string' $\in \Sigma^*$
 - 'this is also a string' $\in \Sigma^{\star}$
 - '1234' ∉ Σ*

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_1 into string s_2

Deletion:

ABACED

Edit distance (aka Levenshtein distance)	
Edit distance between two strings is the minimum number of insertions, deletions and substitution required to transform string s_1 into string s_2	
Substitution:	
ABACED 📥 ABADED 📥 ABADES	
Sub 'D' for 'C' Sub 'S' for 'E)'

Edit distance examples	Edit o
Edit(Kitten, Mitten) = 1	Ed
Operations: Sub 'M' for 'K' Mitten	Operati

	distance e	xamples	
E	dit(Happy, Hilly)	= 3	
Opera	itions:		
	Sub 'a' for 'i'	Нірру	
	Sub 'l' for 'p'	Hilpy	
	Sub 'l' for 'p'	Hilly	

Edit distance e	xamples	
Edit(Banana, Car))= 5	
Operations:		
Delete 'B'	anana	
Delete 'a'	nana	
Delete 'n'	naa	
Sub 'C' for 'n'	Саа	
Sub 'a' for 'r'	Car	

Uses

- grep/egrep
- search
- find
- java.lang.String.contains()

Worst case	
P = AAAA	I
S = AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

Suffix function

 The suffix function σ(x,y) is the length of the longest suffix of x that is a prefix of y

$$\sigma(x, y) = \max_{i} (x_{m-i+1\dots m} = y_{1\dots i})$$

 σ (abcdab, ababcd) = ?

Г

• The suffix function $\sigma(x,y)$ is the length of the longest suffix of x that is a prefix of y

$$\sigma(x, y) = \max_{i} (x_{m-i+1\dots m} = y_{1\dots i})$$

 σ (daabac, abacac) = 4

Suffix function

• The suffix function $\sigma(x,y)$ is the length of the longest suffix of x that is a prefix of y

$$\sigma(x, y) = \max_{i} (x_{m-i+1\dots m} = y_{1\dots i})$$

$$\sigma$$
(dabb, abacd) = ?

Suffix function
• The suffix function
$$\sigma(x,y)$$
 is the length of the
longest suffix of x that is a prefix of y
 $\sigma(x,y) = \max_{i} (x_{m-i+1\dots m} = y_{1\dots i})$
 $\sigma(dabb, abacd) = 0$

- Q = q₁, q₂, ..., q_m corresponding to each symbol, plus a q₀ starting state
- the set of accepting states, A = {q_m}
- vocab $\boldsymbol{\Sigma}$ all symbols in P, plus one more representing all symbols not in P
- The transition function for $q \in Q$ and $a \in \Sigma$ is defined as:
 - $\delta(q, a) = \sigma(p_{1...q}a, P)$

 r ansit δ(q, a) =			Ρ	= a	babaca
state	а	b	с	Р	1
q_0	1	0	0	а	We've seen 'aba' so far
q ₁	1	2	0	b	
q_2	3	0	0	а	σ(abaa, ababaca)
q ₃	?			b	J
q_4				а	
q_5				с	
q_6				а	
q ₇					

 ransit δ(q, a) =			Ρ	= a	babaca
state	а	b	с	Р	1
q ₀	1	0	0	а	We've seen 'ababa' so
q ₁	1	2	0	b	far
q ₂	3	0	0	а	σ(ababab, ababaca)
q_3	1	4	0	b	
q ₄	5	0	0	а	
q_5	1	4		с	
q ₆				а	
q ₇					

Transit • δ(q, a) =	-		Ρ	= abab	a	Matching runtime	
state	а	b	С	Р		 Once we' ve built the FSA, what is the runti O(n) - Each symbol causes a state transition and 	
q	1	0	0	а		only visit each character once	iu we
q ₁	1	2	0	b		 What is the cost to build the FSA? 	
q ₂	3	0	0	а		 How many entries in the table? 	
q ₃	1	4	0	b		 Ω(m Σ) How long does it take to calculate the suffix fund 	ction at
q ₄	5	0	0	a		each entry?	clion at
q ₅	1	4	6	С		• Naïve: O(m)	
q ₆	7	0	0	а		 Overall naïve: O(m² Σ]) Overall fast implementation O(m Σ]) 	
9 ₇	1	2	0				

- For simplicity, assume $\Sigma = (0, 1, 2, ..., 9)$. (in general we can use a base larger than 10).
- A string can then be viewed as a decimal number
- How do we efficiently calculate the numerical representation of a string?

T('9847261') = ?

• Given $T(s_{i...i+m-1})$ how can we efficiently calculate $T(s_{i+1...i+m})$?

m = 4

963801572348267

 $\mathsf{T}(\mathsf{s}_{i\ldots i^{+}m^{-}1})$

 $T(s_{i+1\dots,i+m}) = 10(T(s_{i\dots,i+m-1}) - 10^{m-1}s_i) + s_{i+m}$

Matching r	unning time	6	
Algorithm	Preprocessing time	Matching time	_
Naïve FSA Rabin-Karp Knuth-Morris-Pratt	0 Θ(m Σ) Θ(m) Θ(m)	O((n-m+1)m) Θ(n) O(n)+O(m(v+r Θ(n)	ı/q))