String Algorithms	
David Kauchak	
cs302	000
Spring 2012	0000

Where did "dynamic programming" come from?	
dyamic programming, come from? The 1950 s were not	
good years for maltematical reserch. We he had a very iner-esting genteman in Wathingto namad Wisoon. He was	
Secretary of Defenee, and he actually had a pathologizalfear and hatred of the word, esearch. T m not using the	
	Richard Bellman On the Birth of
poration was employed by the Air Force, and the Air Forcehad Wislon as ist boss essentilly. Hene., fett had to dosomething to shield wilson and the Air Force from the fact Stuart Dreyfus	
place 1 was interested in plamning, in dexision making, in or50/1526-5463-2002-50-01-0048 thinking. But planning, is not a good word for various reasons. I decided therefore to use the word, 'programming.' .pdf	
sons. I decided therefore to use the word, 'programming."I wanted to get across the idea that this was dynamic, this	
was multistage, this was time-varying-I thought, let's kill wo birds with one stone. Let's take a word that has an bsolutely precise meaning, namely dynamic, in the clas	
absolutely precise meaning, namely dynamic, in the clasical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word,	
as an adjective, and that is it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some com-	
bination that will possibly give it a pejorative meaning. it's impossible. Thus, I thought dynamic programming was	
a good name. It was something not even a Congressman	

Strings

String operations

- Given strings s_{1} of length n and s_{2} of length m
- Equality: is $s_{1}=s_{2}$? (case sensitive or insensitive)
z)
- A string is any member of Σ^{*}, i.e. any sequence of 0 or more members of Σ
- 'this is a string' $\in \Sigma^{*}$
- 'this is also a string' $\in \Sigma^{\star}$
- ' 1234 ' $\notin \Sigma^{\star}$
'this is a string' $=$ 'this is a string'
'this is a string' \neq 'this is another string'
'this is a string' $=?$ 'THIS IS A STRING'
- Running time
- $\mathrm{O}(\mathrm{n})$ where n is length of shortest string

String operations

- Concatenate (append): create string $\mathrm{s}_{1} \mathrm{~s}_{2}$
'this is a' . ' string' \rightarrow 'this is a string'
- Running time
(assuming we generate a new string)
- $\Theta(n+m)$

String operations

- Substitute: Exchange all occurrences of a particular character with another character

Substitute('this is a ștring', 'i', 'x')
\rightarrow 'thxs xs a strxng'
Substitute('banana’, 'a’, 'o’) \rightarrow 'bonono’

- Running time
- $\Theta(\mathrm{n})$

String operations

- Length: return the number of characters/ symbols in the string

Length('this is a string') $\rightarrow 16$
Length('this is another string') $\rightarrow 24$

- Running time
- $O(1)$ or $\Theta(n)$ depending on implementation

String operations

- Prefix: Get the first j characters in the string

Prefix('this is a string', 4) \rightarrow 'this'

- Running time
- $\Theta(\mathrm{j})$
- Suffix: Get the last j characters in the string

Suffix('this is a string', 6) \rightarrow 'string'

- Running time
- $\Theta(\mathrm{j})$

String operations
 - Substring - Get the characters between i and j inclusive

Substring('this is a string', 4, 8) \rightarrow ' s is '

- Running time
- $\Theta(j-i+1)$
- Prefix: Prefix(S, i) = Substring(S, 1, i)
- Suffix: Suffix(S, i$)=$ Substring $(\mathrm{S}, \mathrm{i}+1$, length(n$)$)

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Insertion:

$$
\text { ABACED } \square \text { ABACCED } \begin{gathered}
\text { Insert } \\
\text { 'C' }
\end{gathered} \underset{\substack{\text { Insert } \\
\text { 'D' }}}{\square} \text { DABACCED }
$$

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:
ABACED

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

Delete
'A'

Edit distance

Edit distance

 (aka Levenshtein distance)Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

Edit distance examples

```
Edit(Happy, Hilly) = 3
```

Operations:

$$
\begin{array}{ll}
\text { Sub 'a' for 'i' } & \text { Hippy } \\
\text { Sub 'I' for 'p' } & \text { Hilpy } \\
\text { Sub 'l' for 'p' } & \text { Hilly }
\end{array}
$$

Edit distance examples	: $\because: 8$
Edit(Banana, Car) $=5$	
Operations:	
Delete 'B' anana	
Delete 'a' nana	
Delete ' n ' naa	
Sub ' C ' for ' n ' Caa	
Sub 'a' for 'r' Car	

\begin{tabular}{|c|c|}
\hline Edit distance examples \& : \%:
$\because \because \%$

$\because \% \%$

\hline \multicolumn{2}{|l|}{Edit(Simple, Apple) $=3$}

\hline \multicolumn{2}{|l|}{Operations:}

\hline Delete ' S ' imple \&

\hline Sub ' A ' for ' i ' Ample \&

\hline Sub 'm' for 'p' Apple \&

\hline
\end{tabular}

Edit distance	
Why might this be useful?	

Insert:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 \ldots, . n}, Y_{1 \ldots m-1}\right)$
Delete:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 \ldots n-1}, Y_{1 \ldots m}\right)$
Substitute	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . . n-1}, Y_{1 . . . m-1}\right)$
Equal:	$\operatorname{Edit}(X, Y)=\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 . . m-1}\right)$

Running time


```
Edit(X,Y)
    1 }m\leftarrowl\mathrm{ length[X]
    2 n\leftarrowlength[Y]
    3 for }i\leftarrow0\mathrm{ to }
    4. d[i,0]\leftarrowi
    for }j\leftarrow0\mathrm{ to }
    \mathrm{ for }j\leftarrow0\mathrm{ to }n
    for }i\leftarrow1\mathrm{ to m
8 for j\leftarrow1 to n
                d[i,j]=\operatorname{min}(1+d[i-1,j],
                    1+d[i,j-1],
                        DIFF}(\mp@subsup{x}{i}{},\mp@subsup{y}{j}{})+d[i-1,j-1]
10 return d[m,n]
```

 \(\Theta(n m)\)

Variants

- Only include insertions and deletions
- What does this do to substitutions?
- Include swaps, i.e. swapping two adjacent characters counts as one edit
- Weight insertion, deletion and substitution differently
- Weight specific character insertion, deletion and substitutions differently
- Length normalize the edit distance

String matching

Given a pattern string P of length m and a string S of length n, find all locations where P occurs in S

$$
\begin{aligned}
& P=A B A \\
& S=\text { DCABABBABABA }
\end{aligned}
$$

String matching

Given a pattern string P of length m and a string S of length n, find all locations where P occurs in S

$$
\begin{aligned}
& \mathrm{P}=\mathrm{ABA} \\
& \mathrm{~S}=\mathrm{DCABABBABABA} \\
& \uparrow \uparrow \uparrow \uparrow
\end{aligned}
$$

Uses - grep/egrep - search - find - java.lang.String.contains()	

Naive implementation

```
Naive-String-Matcher( }S,P
1 }n\leftarrowl\mathrm{ length [S]
2 }m\leftarrowl\mathrm{ length [P]
for }s\leftarrow0\mathrm{ to }n-
    if S[1\ldotsm]=T[s+1\ldotss+m]
print "Pattern at s"
```


Running time?

```
Naive-String-Matcher \((S, P)\)
\(1 \quad n \leftarrow\) length \([S]\)
\(m \leftarrow\) length \([P]\)
    for \(s \leftarrow 0\) to \(n-m\)
        if \(S[1 \ldots m]=T[s+1 \ldots s+m]\)
        print "Pattern at s"
```

- Best case
- $\Theta(n)$ - when the first character of the pattern does not occur in the string
- Worst case
- $\mathrm{O}((\mathrm{n}-\mathrm{m}+1) \mathrm{m})$

Worst case	
$\begin{aligned} & P=A A A A \\ & S=A A A A A A A A A A A A A \end{aligned}$	

Patterns	$\ddots \because: 8$
Which of these patterns will have that problem?	
P $=$ ABAB	
P $=$ ABDC	
P $=$ BAA	
P $=$ ABBCDDCAABB	

Finite State Automata (FSA)

- An FSA is defined by 5 components - Q is the set of states

Finite State Automata (FSA)

- An FSA is defined by 5 components - Q is the set of states

- q_{0} is the start state
- $A \subseteq Q$, is the set of accepting states where $|A|>0$
- Σ is the alphabet (e.g. $\{A, B\}$
- δ is the transition function from $Q \times \Sigma$ to Q

FSA operation

$$
\mathrm{P}=\mathrm{ABA}
$$

$S=B A B A B B A B A B A$

$$
\mathrm{P}=\mathrm{ABA}
$$

FSA operation

: :\%
$\because \because: \circ$ $\because: \% \%$

$S=B A B A B B A B A B A$

FSA operation

$$
\mathrm{P}=\mathrm{ABA}
$$

Suffix function

- The suffix function $\sigma(x, y)$ is the length of the

Suffix function

- The suffix function $\sigma(x, y)$ is the length of the longest suffix of x that is a prefix of y

$$
\begin{aligned}
& \sigma(x, y)=\max _{i}\left(x_{m-i+1 \ldots m}=y_{1 \ldots i}\right) \\
& \sigma(\text { abcdab }, \text { ababcd })=2
\end{aligned}
$$

Suffix function

- The suffix function $\sigma(x, y)$ is the index of the longest suffix of x that is a prefix of y

$$
\sigma(x, y)=\max _{i}\left(x_{m-i+1 \ldots m}=y_{1 \ldots i}\right)
$$

$\sigma($ daabac, abacac $)=?$

Suffix function

- The suffix function $\sigma(x, y)$ is the length of the longest suffix of x that is a prefix of y

$$
\sigma(x, y)=\max _{i}\left(x_{m-i+1 \ldots m}=y_{1 \ldots i}\right)
$$

$$
\sigma(\text { daabac, abacac })=4
$$

Suffix function

Suffix function

- The suffix function $\sigma(x, y)$ is the length of the longest suffix of x that is a prefix of y

$$
\sigma(x, y)=\max _{i}\left(x_{m-i+1 \ldots m}=y_{1 \ldots i}\right)
$$

$\sigma($ dabb, abacd $)=0$

Building a string matching automata

- Given a pattern $P=p_{1}, p_{2}, \ldots, p_{m}$, we' d like to build an FSA that recognizes P in strings
P = ababaca

Ideas?

Building a string matching automata

P = ababaca

- $Q=q_{1}, q_{2}, \ldots, q_{m}$ corresponding to each symbol, plus a q_{0} starting state
- the set of accepting states, $A=\left\{q_{m}\right\}$
- vocab Σ all symbols in P , plus one more representing all symbols not in P
- The transition function for $q \in Q$ and $a \in \Sigma$ is defined as:
- $\delta(q, a)=\sigma\left(p_{1 \ldots, \ldots}, P\right)$

Transition function

$P=$ ababaca

- $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$

state	a	b	c	P
q_{0}	$?$			a
q_{1}				b
q_{2}				a
q_{3}				b
q_{4}				a
q_{5}				c
q_{6}				a
q_{7}				

Transition function

$P=$ ababaca

- $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$

state	a	b	c	P
q_{0}	1	$?$		a
q_{1}				b
q_{2}				a
q_{3}				b
q_{4}				a
q_{5}				c
q_{6}				a
q_{7}				

$\sigma(b, a b a b a c a)$

Transition function $P=$ ababaca - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						
state	a	b	c	P	$\sigma(\mathrm{b}, \mathrm{ababaca})$	
q_{0}	1	0	?	a		
q_{1}				b		
q_{2}				a		
q_{3}				b		
q_{4}				a		
q_{5}				c		
q_{6}				a		
q_{7}						

Transition function $P=$ ababaca - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$					
state	a	b	C	P	$\sigma(\mathrm{b}, \mathrm{ababaca})$
q_{0}	1	0	0	a	
q_{1}				b	
q_{2}				a	
q_{3}				b	
q_{4}				a	
q_{5}				c	
q_{6}				a	
q_{7}					

Transition function $P=a b a b a c a$ - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						$:$
state	a	b	c	P	We' ve seen 'aba' so far $\sigma(a b a a, ~ a b a b a c a)$	
q_{0}	1	0	0	a		
q_{1}	1	2	0	b		
q_{2}	3	0	0	a		
q_{3}	?			b		
q_{4}				a		
q_{5}				c		
q_{6}				a		
q_{7}						

Transition function $P=$ ababaca - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						
state	a	b	c	P	We' ve seen 'aba' so far $\sigma(a b a a, ~ a b a b a c a)$	
q_{0}	1	0	0	a		
q_{1}	1	2	0	b		
q_{2}	3	0	0	a		
q_{3}	1			b		
q_{4}				a		
q_{5}				c		
q_{6}				a		
q_{7}						

Transition function $P=a b a b a c$ - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						
state	a	b	c	P	We' ve seen 'ababa' so far	
q_{0}	1	0	0	a		
q_{1}	1	2	0	b		
q_{2}	3	0	0	a		
q_{3}	1	4	0	b		
q_{4}	5	0	0	a		
q_{5}	1	?		c		
q_{6}				a		
q_{7}						

Transition function $P=a b a b a c a$ - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						
state	a	b	C	P		
q_{0}	1	0	0	a	$\begin{aligned} & \text { We' ve seen 'ababa' so } \\ & \text { far } \\ & \sigma(\text { ababab, ababaca }) \end{aligned}$	
q_{1}	1	2	0	b		
q_{2}	3	0	0	a		
q_{3}	1	4	0	b		
q_{4}	5	0	0	a		
q_{5}	1	?		c		
q_{6}				a		
q_{7}						

Transition function $P=a b a b a c a$ - $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$						
state	a	b	c	P		
q_{0}	1	0	0	a	We' ve seen 'ababa' so far $\sigma($ ababab, ababaca)	
q_{1}	1	2	0	b		
q_{2}	3	0	0	a		
q_{3}	1	4	0	b		
q_{4}	5	0	0	a		
q_{5}	1	4		c		
q_{6}				a		
q_{7}						

Transition function

$P=$ ababaca

- $\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)$

state	a	b	c	P
q_{0}	1	0	0	a
q_{1}	1	2	0	b
q_{2}	3	0	0	a
q_{3}	1	4	0	b
q_{4}	5	0	0	a
q_{5}	1	4	6	c
q_{6}	7	0	0	a
q_{7}	1	2	0	

Matching runtime

- Once we' ve built the FSA, what is the runtime?
- $\Theta(n)$ - Each symbol causes a state transition and we only visit each character once
- What is the cost to build the FSA?
- How many entries in the table? - $\Omega(m|\Sigma|)$
- How long does it take to calculate the suffix function at each entry?
- Naïve: O(m)
- Overall naïve: $O\left(m^{2}|\Sigma|\right)$
- Overall fast implementation $\mathrm{O}(\mathrm{m}|\Sigma|)$

Rabin-Karp algorithm	
- Use a function T to that computes a numerical representation of P - Callulate T for all m symbol sequences of S and compare	
P = ABA	
S $=$ BABABBABABA	

Rabin-Karp algorithm
 - Use a function T to that computes a numerical representation of P
 - Calculate T for all m symbol sequences of S
 and compare
 $\mathrm{P}=\mathrm{ABA} \quad$ Hash P
 T(P)
 $S=B A B A B B A B A B A$

Rabin-Karp algorithm		$\because \because:$ $\because \because \%$ $\because \because \%$ $\because \%$
- Use a function T to that computes a numerical representation of P - Calculate T for all m symbol sequences of S and compare		
$P=A B A$		
$S=\underbrace{\text { BABABABABABA }} \quad \begin{aligned} & \text { Hash m symbol } \\ & \text { sequences and compare }\end{aligned}$		
T(BAB)		
T(P)		

Rabin-Karp algorithm		$\because: \%$$\because: \%$$\because \% \%$$\vdots \% \%$
- Use a function T to that com representation of P - Calculate T for all m symbo and compare	a numerical ences of S	
$P=A B A$		
$S=B \underbrace{B A B A B B A B A B A}_{\substack{T(B A B) \\=\\ T(P)}}$	Hash m symbol sequences and compare	

Rabin-Karp algorithm	
$\mathrm{P}=\mathrm{ABA} \quad$For this to be useful/ efficient, what needs to be true about $T ?$	
$\mathrm{S}=\mathrm{BA} \underbrace{\mathrm{BABBABABABA}^{2}}_{\substack{\mathrm{T}(\mathrm{BAB}) \\=\\ \mathrm{T}(\mathrm{P})}}$	

Rabin-Karp algorithm	
$P=A B A$	For this to be useful/ efficient, what needs to be true about T ?
$S=B \underbrace{\operatorname{ABABBABABA}}_{\substack{T(B A B) \\=\\ T(P)}} \ldots$	Given $\mathrm{T}\left(\mathrm{s}_{\text {i.i.itm-1 }}\right)$ we must be able to efficiently calculate $\mathrm{T}\left(\mathrm{s}_{\mathrm{i}+1 . \ldots \mathrm{i}+\mathrm{m}}\right)$

Calculating the hash function

- For simplicity, assume $\Sigma=(0,1,2, \ldots, 9)$. (in general we can use a base larger than 10).
- A string can then be viewed as a decimal number

$$
9847261
$$

- How do we efficiently calculate the numerical representation of a string?

$$
T\left({ }^{\prime} 9847261 \prime\right)=?
$$

Horner's rule

$$
T\left(p_{1 \ldots m}\right)=p_{m}+10\left(p_{m-1}+10\left(p_{m-2}+\ldots+10\left(p_{2}+10 p_{1}\right)\right)\right)
$$

$$
9 * 10=90
$$

$$
(90+8) * 10=980
$$

$$
(980+4)^{*} 10=9840
$$

$(9840+7)^{*} 10=98470$
$\ldots=9847621$

Horner's rule		$\because: \%$ $\because: 8$. $\because: \%$ $\because: \%$
$T\left(p_{1 \ldots m}\right)=p_{m}+10\left(p_{m-1}+10\left(p_{m-2}+\ldots+10\left(p_{2}+10 p_{1}\right)\right)\right)$		
9847261	Running time?	
$9 * 10=90$$\Theta(m)$		
$(980+4)^{\star} 10=9840$		
$(9840+7) * 10=98470$		
$\ldots=9847621$		

Calculating the hash on the string

- Given $\mathrm{T}\left(\mathrm{s}_{\mathrm{i} \ldots \mathrm{i}+\mathrm{m}-1}\right)$ how can we efficiently calculate $\mathrm{T}\left(\mathrm{s}_{\mathrm{i}+1 \ldots \mathrm{i}+\mathrm{m}}\right)$?

```
m=4
```

$9 \underbrace{}_{T\left(s_{1.1}, \mathrm{~m} \cdot \mathrm{l}\right)} \underbrace{3801} 572348267$
$T\left(s_{i+1 . . i+m}\right)=10\left(T\left(s_{i . . i+m-1}\right)-10^{m-1} s_{i}\right)+s_{i+m}$

Calculating the hash on the string

- Given $T\left(s_{i+m-1}\right)$ how can we efficiently calculate $\mathrm{T}\left(\mathrm{s}_{\mathrm{i}+1 . . . \mathrm{i}+\mathrm{m}}\right)$?
$m=4$
801
$96 \underbrace{3801}_{T\left(s_{i, i t m-1}\right)} 572348267$
$T\left(s_{i+1 . . i+m}\right)=10\left(T\left(s_{i . . i+m-1}\right)-10^{m-1} s_{i}\right)+s_{i+m}$

Calculating the hash on the string

- Given $\mathrm{T}\left(\mathrm{s}_{\mathrm{i} \ldots . . \mathrm{i}+\mathrm{m}-1}\right)$ how can we efficiently calculate $\mathrm{T}\left(\mathrm{s}_{\mathrm{i}+1 \ldots . . \mathrm{i}+\mathrm{m}}\right)$?
$\mathrm{m}=4$
8010
$96 \underbrace{8801} 572348267$
$\mathrm{T}\left(\mathrm{s}_{1 . \mid+m-1}\right)$ shift digits up
$T\left(s_{i+1 . . i+m}\right)=10\left(T\left(s_{i . i+m-1}\right)-10^{m-1} s_{i}\right)+s_{i+m}$

Calculating the hash on the string

Calculating the hash on the string

- Given $\mathrm{T}\left(\mathrm{s}_{\mathrm{i} . . . i+m-1}\right)$ how can we efficiently calculate $\mathrm{T}\left(\mathrm{s}_{\mathrm{i}+1 \ldots \mathrm{i}+\mathrm{m}}\right)$?

$$
\begin{aligned}
& \mathrm{m}=4 \quad \text { Running time? } \\
& 96 \underbrace{3801572348267} \begin{array}{l}
-\Theta(m) \text { for } s_{1 \ldots m} \\
-O(1) \text { for the res }
\end{array} \\
& \mathrm{T}\left(\mathrm{~s}_{\mathrm{i} . . .1+\mathrm{m}-1}\right) \\
& T\left(s_{i+1 . . i+m}\right)=10\left(T\left(s_{i . . . i+m-1}\right)-10^{m-1} s_{i}\right)+s_{i+m}
\end{aligned}
$$

Algorithm so far...

Algorithm so far...

- Is it correct?
- Each string has a unique numerical value and we compare that with each value in the string
- Running time
- Preprocessing:
- $\Theta(m)$
- Matching
- $\Theta(n-m+1)$

How long does the check $T(P)=T\left(\mathrm{~s}_{\mathrm{i} . . .1+m-1}\right)$ take?

Modular arithmetics

- The run time assumptions we made were assuming arithmetic operations were constant time, which is not true for large numbers
- To keep the numbers small, we' ll use modular arithmetics, i.e. all operations are performed $\bmod q$
- $a+b=(a+b) \bmod q$
- $a^{*} b=\left(a^{*} b\right) \bmod q$
- ...

Modular arithmetics

- If $T(A)=T(B)$, then $T(A) \bmod q=T(B) \bmod q$
- In general, we can apply mods as many times as we want and we will not effect the result
- What is the downside to this modular approach?
- Spurious hits: if $T(A) \bmod q=T(B) \bmod q$ that does not necessarily mean that $T(A)=T(B)$
- If we find a hit, we must check that the actual string matches the pattern

Runtime

- Preprocessing
- $\Theta(m)$
- Running time
- Best case:
- $\Theta(n-m+1)$ - No matches and no spurious hits
- Worst case
- $\Theta((n-m+1) m)$

Average case running time

- Assume v valid matches in the string
- What is the probability of a spurious hit?
- As with hashing, assume a uniform mapping onto values of q :

- What is the probability under this assumption?

Average case running time

- Assume v valid matches in the string
- What is the probability of a spurious hit?
- As with hashing, assume a uniform mapping onto values of q :

- What is the probability under this assumption? $1 / \mathrm{q}$

Average case running time

- How many spurious hits?
- n/q
- Average case running time:

$$
O(n-m+1)+O(m(v+n / q))
$$

iterate over the checking matches positions and spurious hits

Matching running times		
Algorithm	Preprocessing time	Matching time
Naïve FSA Rabin-Karp Knuth-Morris-Pratt	0 $\Theta(m\|\Sigma\|)$ $\Theta(m)$ $\Theta(m)$	$\begin{aligned} & O((n-m+1) m) \\ & \Theta(n) \\ & O(n)+O(m(v+n / q)) \\ & \Theta(n) \end{aligned}$

