
5/3/12

1

String Algorithms

David Kauchak
cs302

Spring 2012

Where did “dynamic programming” come from?

Richard Bellman On the Birth of
Dynamic Programming

Stuart Dreyfus

http://www.eng.tau.ac.il/~ami/cd/
or50/1526-5463-2002-50-01-0048
.pdf

Strings

l  Let Σ be an alphabet, e.g. Σ = (, a, b, c, …,
z)

l  A string is any member of Σ*, i.e. any
sequence of 0 or more members of Σ
l  ‘this is a string’ ∈ Σ*
l  ‘this is also a string’ ∈ Σ*
l  ‘1234’ ∉ Σ*

String operations
l  Given strings s1 of length n and s2 of length m
l  Equality: is s1 = s2? (case sensitive or insensitive)

l  Running time
l  O(n) where n is length of shortest string

‘this is a string’ = ‘this is a string’

‘this is a string’ ≠ ‘this is another string’

‘this is a string’ =? ‘THIS IS A STRING’

5/3/12

2

String operations

l  Concatenate (append): create string s1s2

l  Running time
(assuming we generate a new string)
l  Θ(n+m)

‘this is a’ . ‘ string’ → ‘this is a string’

String operations

l  Substitute: Exchange all occurrences of a
particular character with another character

l  Running time
l  Θ(n)

Substitute(‘this is a string’, ‘i’, ‘x’)
→ ‘thxs xs a strxng’

Substitute(‘banana’, ‘a’, ‘o’) → ‘bonono’

String operations

l  Length: return the number of characters/
symbols in the string

l  Running time
l  O(1) or Θ(n) depending on implementation

Length(‘this is a string’) → 16

Length(‘this is another string’) → 24

String operations
l  Prefix: Get the first j characters in the string

l  Running time
l  Θ(j)

l  Suffix: Get the last j characters in the string

l  Running time
l  Θ(j)

Prefix(‘this is a string’, 4) → ‘this’

Suffix(‘this is a string’, 6) → ‘string’

5/3/12

3

String operations
l  Substring – Get the characters between i and j inclusive

l  Running time
l  Θ(j – i + 1)

l  Prefix: Prefix(S, i) = Substring(S, 1, i)
l  Suffix: Suffix(S, i) = Substring(S, i+1, length(n))

Substring(‘this is a string’, 4, 8) → ‘s is ’

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Insertion:

ABACED ABACCED DABACCED

Insert
‘C’

Insert
‘D’

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED

Delete
‘A’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

5/3/12

4

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED BACE

Delete
‘A’

Delete
‘D’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance
(aka Levenshtein distance)

Substitution:

ABACED ABADED ABADES

Sub ‘D’ for ‘C’ Sub ‘S’ for ‘D’

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s1 into string s2

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

Edit distance examples

Edit(Happy, Hilly) = 3

Operations:

Sub ‘a’ for ‘i’ Hippy

Sub ‘l’ for ‘p’ Hilpy

Sub ‘l’ for ‘p’ Hilly

5/3/12

5

Edit distance examples

Edit(Banana, Car) = 5

Operations:

Delete ‘B’ anana

Delete ‘a’ nana

Delete ‘n’ naa

Sub ‘C’ for ‘n’ Caa

Sub ‘a’ for ‘r’ Car

Edit distance examples

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple

Sub ‘A’ for ‘i’ Ample

Sub ‘m’ for ‘p’ Apple

Edit distance

Why might this be useful?

Is edit distance symmetric?

l  that is, is Edit(s1, s2) = Edit(s2, s1)?

l  Why?
l  sub ‘i’ for ‘j’ → sub ‘j’ for ‘i’
l  delete ‘i’ → insert ‘i’
l  insert ‘i’ → delete ‘i’

Edit(Simple, Apple) =? Edit(Apple, Simple)

5/3/12

6

Calculating edit distance

X = A B C B D A B

Y = B D C A B A

Ideas?

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

After all of the operations, X needs
to equal Y

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

Operations: Insert

Delete

Substitute

Insert

X = A B C B D A ?

Y = B D C A B ?

5/3/12

7

Insert

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...1...1 −+= mn YXEditYXEdit

Delete

X = A B C B D A ?

Y = B D C A B ?

Delete

X = A B C B D A ?

Y = B D C A B ?

),(1),(...11...1 mn YXEditYXEdit −+=

Edit

Substition

X = A B C B D A ?

Y = B D C A B ?

5/3/12

8

Substition

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...11...1 −−+= mn YXEditYXEdit

Anything else?

X = A B C B D A ?

Y = B D C A B ?

Equal

X = A B C B D A ?

Y = B D C A B ?

Equal

X = A B C B D A ?

Y = B D C A B ?
Edit

),(),(1...11...1 −−= mn YXEditYXEdit

5/3/12

9

Combining results

),(),(1...11...1 −−= mn YXEditYXEdit

),(1),(1...11...1 −−+= mn YXEditYXEdit

),(1),(...11...1 mn YXEditYXEdit −+=

),(1),(1...1...1 −+= mn YXEditYXEditInsert:

Delete:

Substitute:

Equal:

Combining results

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−−

−

−

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Running time

Θ(nm)

Variants
l  Only include insertions and deletions

l  What does this do to substitutions?

l  Include swaps, i.e. swapping two adjacent characters
counts as one edit

l  Weight insertion, deletion and substitution differently

l  Weight specific character insertion, deletion and
substitutions differently

l  Length normalize the edit distance

5/3/12

10

String matching
Given a pattern string P of length m and a string S
of length n, find all locations where P occurs in S

P = ABA

S = DCABABBABABA

String matching

P = ABA

S = DCABABBABABA

Given a pattern string P of length m and a string S
of length n, find all locations where P occurs in S

Uses

l  grep/egrep
l  search
l  find
l  java.lang.String.contains()

Naive implementation

5/3/12

11

Is it correct? Running time?

l  What is the cost of the equality check?
l  Best case: O(1)
l  Worst case: O(m)

Running time?

l  Best case
l  Θ(n) – when the first character of the pattern does

not occur in the string
l  Worst case

l  O((n-m+1)m)

Worst case

P = AAAA

S = AAAAAAAAAAAAA

5/3/12

12

Worst case

P = AAAA

S = AAAAAAAAAAAAA

Worst case

P = AAAA

S = AAAAAAAAAAAAA

Worst case

P = AAAA

S = AAAAAAAAAAAAA

repeated work!

Worst case

P = AAAA

S = AAAAAAAAAAAAA

Ideally, after the first match, we’d
know to just check the next
character to see if it is an ‘A’

5/3/12

13

Patterns

Which of these patterns will have that problem?

P = ABAB

P = ABDC

P = BAA

P = ABBCDDCAABB

Patterns

Which of these patterns will have that problem?

P = ABAB

P = ABDC

P = BAA

P = ABBCDDCAABB

If the pattern has a
suffix that is also a
prefix then we will
have this problem

Finite State Automata (FSA)
l  An FSA is defined by 5 components

l  Q is the set of states

q0 q1 q2 qn …

Finite State Automata (FSA)
l  An FSA is defined by 5 components

l  Q is the set of states

l  q0 is the start state
l  A ⊆ Q, is the set of accepting states where |A| > 0
l  Σ is the alphabet (e.g. {A, B}
l  δ is the transition function from Q x Σ to Q

q0 q1 q2 qn …

Q Σ Q

q0 A q1
q0 B q2
q1 A q1 …

q0 q1 q2
A

B

A …

q7

5/3/12

14

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

An FSA starts at state q0 and reads the characters of the input
string one at a time.

If the automaton is in state q and reads character a, then it
transitions to state δ(q,a).

If the FSA reaches an accepting state (q ∈ A), then the FSA has
found a match.

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

What pattern does this represent?

P = ABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

5/3/12

15

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

5/3/12

16

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

5/3/12

17

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

FSA operation

q0 q3 q1 A B
q2 A

B A

B
B

A

P = ABA

S = BABABBABABA

Suffix function

l  The suffix function σ(x,y) is the length of the
longest suffix of x that is a prefix of y

)(max),(...1...1 imimi
yxyx == +−σ

σ(abcdab, ababcd) = ?

Suffix function

l  The suffix function σ(x,y) is the length of the
longest suffix of x that is a prefix of y

)(max),(...1...1 imimi
yxyx == +−σ

σ(abcdab, ababcd) = 2

5/3/12

18

Suffix function

l  The suffix function σ(x,y) is the index of the
longest suffix of x that is a prefix of y

σ(daabac, abacac) = ?

)(max),(...1...1 imimi
yxyx == +−σ

Suffix function

σ(daabac, abacac) = 4

l  The suffix function σ(x,y) is the length of the
longest suffix of x that is a prefix of y

)(max),(...1...1 imimi
yxyx == +−σ

Suffix function

σ(dabb, abacd) = ?

l  The suffix function σ(x,y) is the length of the
longest suffix of x that is a prefix of y

)(max),(...1...1 imimi
yxyx == +−σ

Suffix function

σ(dabb, abacd) = 0

l  The suffix function σ(x,y) is the length of the
longest suffix of x that is a prefix of y

)(max),(...1...1 imimi
yxyx == +−σ

5/3/12

19

Building a string matching
automata
l  Given a pattern P = p1, p2, …, pm, we’d like to build

an FSA that recognizes P in strings

P = ababaca

Ideas?

Building a string matching automata

l  Q = q1, q2, …, qm corresponding to each
symbol, plus a q0 starting state

l  the set of accepting states, A = {qm}
l  vocab Σ all symbols in P, plus one more

representing all symbols not in P
l  The transition function for q ∈ Q and a ∈ Σ is

defined as:
l  δ(q, a) = σ(p1…qa, P)

P = ababaca

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 ? a
q1 b
q2 a
q3 b
q4 a
q5 c
q6 a
q7

σ(a, ababaca)

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 ? a
q1 b
q2 a
q3 b
q4 a
q5 c
q6 a
q7

σ(b, ababaca)

5/3/12

20

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 ? a
q1 b
q2 a
q3 b
q4 a
q5 c
q6 a
q7

σ(b, ababaca)

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 b
q2 a
q3 b
q4 a
q5 c
q6 a
q7

σ(b, ababaca)

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 b
q2 a
q3 b
q4 a
q5 c
q6 a
q7

q0 q1
A

B,C

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 ? b
q4 a
q5 c
q6 a
q7

We’ve seen ‘aba’ so far

σ(abaa, ababaca)

5/3/12

21

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 1 b
q4 a
q5 c
q6 a
q7

We’ve seen ‘aba’ so far

σ(abaa, ababaca)

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 1 4 0 b
q4 5 0 0 a
q5 1 ? c
q6 a
q7

We’ve seen ‘ababa’ so
far

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 1 4 0 b
q4 5 0 0 a
q5 1 ? c
q6 a
q7

We’ve seen ‘ababa’ so
far

σ(ababab, ababaca)

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 1 4 0 b
q4 5 0 0 a
q5 1 4 c
q6 a
q7

We’ve seen ‘ababa’ so
far

σ(ababab, ababaca)

5/3/12

22

Transition function

l  δ(q, a) = σ(p1…qa, P)
P = ababaca

state a b c P
q0 1 0 0 a
q1 1 2 0 b
q2 3 0 0 a
q3 1 4 0 b
q4 5 0 0 a
q5 1 4 6 c
q6 7 0 0 a
q7 1 2 0

Matching runtime

l  Once we’ve built the FSA, what is the runtime?
l  Θ(n) - Each symbol causes a state transition and we

only visit each character once
l  What is the cost to build the FSA?

l  How many entries in the table?
l  Ω(m|Σ|)

l  How long does it take to calculate the suffix function at
each entry?
l  Naïve: O(m)

l  Overall naïve: O(m2|Σ|)
l  Overall fast implementation O(m|Σ|)

Rabin-Karp algorithm

P = ABA

S = BABABBABABA

- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

P = ABA

S = BABABBABABA

Hash P

T(P)

Rabin-Karp algorithm
- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

5/3/12

23

P = ABA

S = BABABBABABA
Hash m symbol
sequences and compare

T(P)

Rabin-Karp algorithm
- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

T(BAB)
=

P = ABA

S = BABABBABABA
Hash m symbol
sequences and compare

T(P)

match

Rabin-Karp algorithm
- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

T(ABA)
=

P = ABA

S = BABABBABABA
Hash m symbol
sequences and compare

T(P)

Rabin-Karp algorithm
- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

T(BAB)
=

P = ABA

S = BABABBABABA
Hash m symbol
sequences and compare

T(P)

…

Rabin-Karp algorithm
- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S
and compare

T(BAB)
=

5/3/12

24

Rabin-Karp algorithm

P = ABA

S = BABABBABABA

For this to be useful/
efficient, what needs
to be true about T?

T(P)

…
T(BAB)

=

Rabin-Karp algorithm

P = ABA

S = BABABBABABA

For this to be useful/
efficient, what needs
to be true about T?

T(P)

…

Given T(si…i+m-1) we must be able
to efficiently calculate T(si+1…i+m)

T(BAB)
=

Calculating the hash function
l  For simplicity, assume Σ = (0, 1, 2, …, 9). (in general we

can use a base larger than 10).
l  A string can then be viewed as a decimal number

l  How do we efficiently calculate the numerical
representation of a string?

T(‘9847261’) = ?

Horner’s rule
)))10(10...(10(10)(1221...1 ppppppT mmmm +++++= −−

9847261

9 * 10 = 90

(90 + 8)*10 = 980

(980 + 4)*10 = 9840

(9840 + 7)*10 = 98470

… = 9847621

5/3/12

25

Horner’s rule
)))10(10...(10(10)(1221...1 ppppppT mmmm +++++= −−

9847261

9 * 10 = 90

(90 + 8)*10 = 980

(980 + 4)*10 = 9840

(9840 + 7)*10 = 98470

… = 9847621

Running time?

Θ(m)

Calculating the hash on the
string

963801572348267
m = 4

l  Given T(si…i+m-1) how can we efficiently
calculate T(si+1…i+m)?

T(si…i+m-1)

mii
m

miimii sssTsT +
−

−+++ +−=)10)((10)(1
1......1

Calculating the hash on the
string

963801572348267
m = 4

l  Given T(si…i+m-1) how can we efficiently
calculate T(si+1…i+m)?

T(si…i+m-1)

mii
m

miimii sssTsT +
−

−+++ +−=)10)((10)(1
1......1

subtract highest order digit

801

Calculating the hash on the
string

963801572348267
m = 4

l  Given T(si…i+m-1) how can we efficiently
calculate T(si+1…i+m)?

T(si…i+m-1)
shift digits up

8010

mii
m

miimii sssTsT +
−

−+++ +−=)10)((10)(1
1......1

5/3/12

26

Calculating the hash on the
string

963801572348267
m = 4

T(si…i+m-1)
add in the lowest digit

8015

l  Given T(si…i+m-1) how can we efficiently
calculate T(si+1…i+m)?

mii
m

miimii sssTsT +
−

−+++ +−=)10)((10)(1
1......1

Calculating the hash on the
string

963801572348267
m = 4

T(si…i+m-1)

Running time?
- Θ(m) for s1…m

- O(1) for the rest

mii
m

miimii sssTsT +
−

−+++ +−=)10)((10)(1
1......1

l  Given T(si…i+m-1) how can we efficiently
calculate T(si+1…i+m)?

Algorithm so far…

l  Is it correct?
l  Each string has a unique numerical value and we

compare that with each value in the string
l  Running time

l  Preprocessing:
l  Θ(m)

l  Matching
l  Θ(n-m+1)

Is there any problem with this analysis?

Algorithm so far…

l  Is it correct?
l  Each string has a unique numerical value and we

compare that with each value in the string
l  Running time

l  Preprocessing:
l  Θ(m)

l  Matching
l  Θ(n-m+1)

How long does the check T(P) = T(si…i+m-1) take?

5/3/12

27

Modular arithmetics
l  The run time assumptions we made were

assuming arithmetic operations were constant
time, which is not true for large numbers

l  To keep the numbers small, we’ll use modular
arithmetics, i.e. all operations are performed
mod q
l  a+b = (a+b) mod q
l  a*b = (a*b) mod q
l  …

Modular arithmetics

l  If T(A) = T(B), then T(A) mod q = T(B) mod q
l  In general, we can apply mods as many times as

we want and we will not effect the result
l  What is the downside to this modular

approach?
l  Spurious hits: if T(A) mod q = T(B) mod q that

does not necessarily mean that T(A) = T(B)
l  If we find a hit, we must check that the actual

string matches the pattern

Runtime

l  Preprocessing
l  Θ(m)

l  Running time
l  Best case:

l  Θ(n-m+1) – No matches and no spurious hits
l  Worst case

l  Θ((n-m+1)m)

Average case running time

l  Assume v valid matches in the string
l  What is the probability of a spurious hit?

l  As with hashing, assume a uniform mapping onto
values of q:

l  What is the probability under this assumption?

1…q Σ*

5/3/12

28

Average case running time

l  Assume v valid matches in the string
l  What is the probability of a spurious hit?

l  As with hashing, assume a uniform mapping onto
values of q:

l  What is the probability under this assumption? 1/q

1…q Σ*

Average case running time

l  How many spurious hits?
l  n/q

l  Average case running time:

O(n-m+1) + O(m(v+n/q))

iterate over the
positions

checking matches
and spurious hits

Matching running times

Algorithm Preprocessing time Matching time

Naïve 0 O((n-m+1)m)
FSA Θ(m|Σ|) Θ(n)
Rabin-Karp Θ(m) O(n)+O(m(v+n/q))
Knuth-Morris-Pratt Θ(m) Θ(n)

