Linear Programming	
David Kauchak	
cs302	000
Spring 2012	$000 \cdot 0$

Administrative

- Assignment 16
- Mean: 35.6
- Median: 36
- Assignment 17
- Mean: 14.6
- Median: 15
- NP-complete?

Linear programming

A linear function is a function of n variables defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

A linear equality is a linear function with an equality constraint

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

A linear inequality is a linear function with an inequality constraint

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geq b
\end{aligned}
$$

Linear programming

- A linear programming problem consists of two parts
- a linear function to maximize or minimize

$$
\operatorname{maximize} c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

- subject to a set of linear constraints

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b
$$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b
$$

$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b$

Another example
A chocolatier has two products: a basic product and a deluxe.
The company makes x_{1} boxes of the basic per day at a profit of

$\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The
daily demand is 200 of the basic and 300 of the deluxe. The
workforce can create 400 boxes of chocolate per day. How
much of each should they create to maximize profits?

How many variables do we
need to model the problem?

Another example

- A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?
$x_{1}=$ number of boxes per day of basic
$x_{2}=$ number of boxes per day of deluxe

Another example

- A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

What are the constraints?

Another example

- A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How
much of each should they create to maximize profits?

$$
\begin{aligned}
& x_{1} \leq 200 \\
& x_{2} \leq 300
\end{aligned}
$$

Another example

- A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400
\end{aligned}
$$

any others?

Another example

- A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$
What function are we trying to maximize/minimize? of
\qquad
 A chocolatier has two products: a basic product and a deluxe.
The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?
maximize $x_{1}+6 x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}	≥ 0

Solutions to LPs

- A solution to an LP is a vertex on the feasibility polygon
- the very last feasible point in the direction of improving objective function

Solutions to LPs

- A solution to an LP is a vertex on the feasibility polygon
- the very last feasible point in the direction of improving objective function
- Except...
maximize $x_{1}+x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}	≥ 0

Solutions to LPs

- A solution to an LP is a vertex on the feasibility polygon
- the very last feasible point in the direction of improving objective function
- Except...
maximize $x_{1}+x_{2}$
subject to
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$

Solutions to LPs

- A solution to an LP is a vertex on the feasibility polygon
- the very last feasible point in the direction of improving objective function
- Except...

$$
\begin{aligned}
& \operatorname{maximize} x_{1}+6 x_{2} \\
& \text { subject to } \\
& x_{1} \leq 1 \\
& x_{1} \geq 2
\end{aligned} \quad \text { linear program is infeasible }
$$

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.
$\operatorname{maximize} x_{1}+6 x_{2} \quad$ what changes?
subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total uses one unit and premium uses 3 units. We
of 600 units a day of this packaging material.

maximize $x_{1}+6 x_{2}$	Introduce a new variable x_{3}
subject to	
x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}, x_{3}	≥ 0

,

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

maximize $x_{1}+6 x_{2}$

subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}, x_{3}	≥ 0

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

$$
\operatorname{maximize} x_{1}+6 x_{2}
$$

subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total uses one unit and premium uses 3 units. We
of 600 units a day of this packaging material.

$$
\left.\begin{aligned}
& \operatorname{maximize} x_{1}+6 x_{2} \\
& \text { subject to } \\
& x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2}+x_{3}
\end{aligned} \leq 400 \right\rvert\,
$$

modify existing constraints

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.
maximize $x_{1}+6 x_{2}+13 x_{3} \quad$ modify the objective function subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

$$
\begin{aligned}
& \text { maximize } x_{1}+6 x_{2} \\
& \text { subject to }
\end{aligned}
$$

Anything else?

More products

- The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a tota of 600 units a day of this packaging material.

```
maximize \(x_{1}+6 x_{2}+13 x_{3} \quad\) What does the feasibility
subject to
```

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

$: \because:$
:B.
*日:
$\because \because$

-•***

Feasibility region

- For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)
- Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Feasibility region

- For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)
- Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

:日:
-日*
-••
-•••

Feasibility region

- For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)
- Each constraint defines a Rn-1 plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Feasibility region

- For n variables, the feasibility region is a polyhedron in R (i.e. n-dimensional space)
- Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Feasibility region

－For n variables，the feasibility region is a polyhedron in R^{n} （i．e．n－dimensional space）
－Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half－space on one side of the plane
$\operatorname{maximize} x_{1}+6 x_{2}+13 x_{3}$ subject to

$x_{1}, x_{2}, x_{3} \geq 0$

Feasibility region
－For n variables，the feasibility region is a polyhedron in R^{n} （i．e．n－dimensional space）
－Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half－space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2}+x_{3} \leq 400$
$x_{2}+3 x_{3} \leq 600$
：！：。
$\because \because \theta^{\circ}$
－0． －

Vector／matrix form

$\because: \because$

：：००
＊日。
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600

－0：

Standard form

$\because:$
 :O

Converting an LP into
standard form

- LP is minimize instead of maximize
- It is a maximization problem
- the constraints are all \leq

$$
\mathbf{a}_{i} \mathbf{x} \leq b_{i}
$$

- and all variables are non-negative, i.e. have constraints of the form

$$
x_{i} \geq 0
$$

Converting an LP into standard form

- LP contains constraints of the form:
$\mathbf{a}_{i} \mathbf{x} \geq b_{i} \quad \square \quad-\mathbf{a}_{i} \mathbf{x} \leq-b_{i}$

Converting an LP into standard form

- LP contains constraints of the form:

Converting an LP into standard form

Converting an LP into standard form

- LP contains variable without a non-negative bound constraint

replace all occurrences of x_{i} with $-x^{\prime}{ }_{i}$ in the objective and constraints
- LP contains variable without a non-negative bound constraint
$x_{i} \leq 0$

$$
x_{i}^{\prime} \geq 0
$$

$x_{i} \leq 0$

replace all occurrences of x_{i} with
constraints
conderive and

Converting an LP into standard form

- LP contains variable without a non-negative bound constraint

$$
x_{i} \text { is unbounded } \square \quad \begin{aligned}
& x_{i}^{+} \geq 0 \\
& x_{i}^{-} \geq 0
\end{aligned}
$$

replace all occurrences of x_{i} with $x_{i}^{+}-x_{i}^{-}$in the objective and constraints

Simplex method

Start: [0,0]

Objective score: 0
$\operatorname{maximize} x_{1}+x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}	≥ 0

Simplex method

Adjacent vertices
[0, 300]
Objective score:
[200, 0]
Objective score.
$\operatorname{maximize} x_{1}+x_{2}$
subject to $\quad \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$

Simplex method
Adjacent vertices
 [200, 0]

Objective score: 200
$\operatorname{maximize} x_{1}+x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400

either option
improves the score

Simplex method

Adjacent vertices

Objective score: 400
$\operatorname{maximize} x_{1}+x_{2}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}	≥ 0

No improvement, so we' re done

Another simplex example

Start at $[0,0,0]$
Adjacent vertices
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Another simplex example

Another simplex example
[200,0,0]
Adjacent vertices
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

[200,200,0]
Adjacent vertices
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Simplex algorithm

let v be any vertex in the feasibility region
While there is a neighbor v^{\prime} of v with better objective value set $v=v^{\prime}$

- 3 things to work out:
- determine a starting vertex
- check whether current vertex is optimal
- determine where to move next

Is the origin the optimal solution?

- Assuming the origin is feasible
- When is the origin an optimal vertex?
- if all $\mathrm{c}_{\mathrm{i}} \leq 0$
- Why?
$\operatorname{maximize} \mathbf{c}^{T} \mathbf{x}$ subject to

Ax $\leq b$
$\mathbf{x} \geq 0$

For example		
$\begin{aligned} & \text { maximize } 2 x_{1}+5 x_{2} \\ & \text { subject to } \\ & 2 x_{1}-x_{2} \leq 4 \\ & x_{1}+2 x_{2} \leq 9 \\ &-x_{1}+x_{2} \leq 3 \\ & x_{1} \geq 0 \\ & x_{2} \geq 0 \end{aligned}$	Is $[0,0]$ a feasible vertex? Yes. We have $\mathbf{x} \geq 0$ and all b_{i} are positive	

For example	
maximize $2 x_{1}+5 x_{2}$	Is it optimal?
subject to	no, both c_{i} are positive
$2 x_{1}-x_{2} \leq 4$	
$x_{1}+2 x_{2} \leq 9$	
$-x_{1}+x_{2} \leq 3$	
$x_{1} \geq 0$	
$x_{2} \geq 0$	

For example		
$\begin{aligned} & \operatorname{maximize} 2 x_{1}+5 x_{2} \\ & \text { subject to } \\ & 2 x_{1}-x_{2} \leq 4 \\ & x_{1}+2 x_{2} \leq 9 \\ &-x_{1}+x_{2} \leq 3 \\ & x_{1} \geq 0 \\ & x_{2} \geq 0 \end{aligned}$	How far can we increase x_{2} ? $x_{2}=3$ This gives us a new vertex at [0,3]	

Simplex algorithm continued

- We've shown how to check for optimality and move to a new vertex when we are at the origin
- After we've moved to a new vertex, now what?
- Idea: we can transform the problem so that the new point is at the origin
- The details are beyond the scope of this class, but it's not too hard...

Simplex algorithm

let v be any vertex in the feasibility region
transform the LP so that v is the origin
while a c_{i} exists such that $c_{i}>0$ (i.e. a better solution/vertex exists)

- pick some such c_{i} and increase x_{i} until a constraint is tight (i.e. increasing x_{i} further would move out of the feasibility space
- set $\mathrm{v}=\mathrm{v}$
- transform the LP so that v is the origin

Running time

- let v be any vertex in the feasibility region
- transform the LP so that v is the origin
- while a c_{i} exists such that $c_{i}>0$ (i.e. a better solution/vertex exists)
- pick some such c_{i} and increase x_{i} until a constraint is tight (i.e. increasing x_{i} further would move out of the feasibility space
- set $\mathrm{v}=\mathrm{v}$,
- transform the LP so that v is the origin

Given an LP, we have n variables, m inequality constraints and n constraints of the form $x \geq 0$

Running time

- let v be any vertex in the feasibility region
- transform the LP so that v is the origin
- while a c_{i} exists such that $c_{i}>0$ (i.e. a
better solution/vertex exists)
- pick some such c_{i} and increase x_{i} until a constraint is tight (i.e. increasing x_{i} further would move out of the feasibility space
- set $\mathrm{v}=\mathrm{v}$ '

What is the per iteration cost?

- transform the LP so that v is the origin

Running time

- let v be any vertex in the feasibility region
- transform the LP so that v is the origin
- while a c_{i} exists such that $c_{i}>0$ (i.e. a better solution/vertex exists)
- pick some such c_{i} and increase x_{i} until a constraint is tight (i.e. increasing x_{i} further would move out of the feasibility space
- set v=v'
\square - transform the LP so that v is the origin O(nm)

Running time

mp otermine how far determine how fa r all x fixed but x_{i}

Running time - let v be any vertex in the feasibility region - transform the LP so that v is the origin - while a c_{i} exists such that $c_{i}>0$ (i.e. a better solution/vertex exists) - pick some such c_{i} and increase x_{i} until a constraint is tight (i.e. increasing x_{i} further would move out of the feasibility space - set $\mathrm{v}=\mathrm{v}$ '		

Running time of simplex

- Worst case is exponential
- There are theoretical examples that can be created where the running time is exponential
- In practice, the algorithm is much faster

Other LP solvers

- Many other LP algorithms exist
- ellipsoid algorithm
- interior point methods (many of these)
- Both of the above algorithms are O(polynomial time)
- State of the art run-times are a toss up between interior point methods and simplex solvers

Another example

- Carpet company: From our analysts, we re given carpet demand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$.
- The demand fluctuates from month to month. We can handle this demand in three ways
- Overtime: Overtime costs 80% more than regular pay. Workers
can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.

What is the profit for a month?

- Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$.
- The demand fluctuates from month to month. We can handle this demand in three ways:
- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
profit $=$ revenue - cost
revenue $=$ carpets_sold * price
cost $=$ employees * $2000+$
overtime * 180 +
hirings * $320+$
firings * 400 +
storage * 8

Defining variables

- Carpet company: From our analysts, we' re given carpet emand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$

$: \because$:
 $\because \bullet$

- The demand fluctuates from month to month. We can handle this demand in three ways:
Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month
profit $=$ revenue - cost
revenue = carpets_sold * price
cost $=$ employees * 2000
overtime * 180 +
hirings * $320+$
firings * 400 +
storage * 8
$x_{i}=$ carpets made in month i
$w_{i}=$ number of employees during month i $\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime $h_{i}=$ number of hirings at beginning of month $f_{i}=$ number of firings at beginning of month i $\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month i

Constraints

- Carpet company: From our analysts, we' re given carpe demand estimates for the next calendar year: $d_{1}, d_{2}, \ldots, d_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 /$ mo.
- The demand fluctuates from month to month. We can handle this demand in three ways.
- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month i
$x_{i}=$ carpets made in month i
Constraints on carpets sold?
$w_{i}=$ number of employees during month i
$\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime

$$
c_{i} \leq d_{i}
$$

$h_{i}=$ number of hirings at beginning of month
$c_{i} \leq x_{i}+s_{i}$
$f_{i}=$ number of firings at beginning of month i
$\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month

Constraints

- Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $d_{1}, d_{2}, \ldots, d_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid \$2000/mo.
- The demand fluctuates from month to month. We can handle this demand in three ways.
- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month i
$x_{i}=$ carpets made in month $\mathrm{i} \quad$ How many carpets are made
$w_{i}=$ number of employees during month i
$\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime
$h_{i}=$ number of hirings at beginning of month
$x_{i}=20 w_{i}+o_{i}$
$f_{i}=$ number of firings at beginning of month i
$\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month i

Constraints
 Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$.
 - The demand fluctuates from month to month. We can handle this demand in three ways:
 Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
 - Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
 Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
 $c_{i}=$ carpets sold in month i
 $x_{i}=$ carpets made in month $i \quad$ How many workers do we
 $w_{i}=$ number of employees during month i
 $\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime
 $h_{i}=$ number of hirings at beginning of month i
 $w_{i}=w_{i-1}+h_{i}-f_{i}$
 $f_{i}=$ number of firings at beginning of month i
 $\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month

Constraints

- Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$.

: :
 $\because \bullet$

$\because: 0^{\circ}$

The demand fluctuates from month to month. We can handle this demand in three ways

- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month i
$x_{i}=$ carpets made in month $i \quad$ How many carpets are
$w_{i}=$ number of employees during month i stored?
$\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime
$h_{i}=$ number of hirings at beginning of month
$s_{i}=S_{i-1}+x_{i}-c_{i}$
$f_{i}=$ number of firings at beginning of month i
$\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month i

Constraints

Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $d_{1}, d_{2}, \ldots, d_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 /$ mo.

- The demand fluctuates from month to month. We can handle this demand in three ways
- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month i
$x_{i}=$ carpets made in month i
$w_{i}=$ number of employees during month i
$o_{i} \leq 6 w_{i}$
$\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime
$h_{i}=$ number of hirings at beginning of month
$f_{i}=$ number of firings at beginning of month i
$\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month i

Constraints

- Carpet company: From our analysts, we' re given carpet demand estimates for the next calendar year: $d_{1}, d_{2}, \ldots, d_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid \$2000/mo.
- The demand fluctuates from month to month. We can handle this demand in three ways
- Overtime: Overtime costs 80% more than regular pay. Workers can put in at most 30\% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.
$c_{i}=$ carpets sold in month $i \quad$ Any other constraints?
$x_{i}=$ carpets made in month i
$c_{i}, x_{i}, w_{i}, o_{i}, h_{i}, f_{i}, s_{i} \geq 0$
$w_{i}=$ number of employees during month i
$\mathrm{o}_{\mathrm{i}}=$ number of carpets made with overtime
$h_{i}=$ number of hirings at beginning of month i
$f_{i}=$ number of firings at beginning of month i
$\mathrm{s}_{\mathrm{i}}=$ number of carpets stored in month i

Maximizing profit	$\because: 8:$
profit $=$ revenue - cost	
revenue $=$ carpets_sold * price	
cost $=$ employees * $2000+$	
overtime * $180+$	
hirings * $320+$	
firings * $400+$	
storage * 8	

The solution

- Given our problem formulation, we can plug it into a solver (or write our own) and we' ll get a solution back if one exists
- Are we done?
- Our solution may have non-integer values. How do we sell .3 of a carpet?
- If the variable values are large, we can round and we won't be too far away from optimal
- If the variable values are small, then we need to be more careful about our rounding decisions
- Integer (linear) programming is the linear programming problem with integer solutions
- Like the 0-1 knapsack problem vs. the fractional knapsack problem, the fractional problem is easier
- Integer programming is NP-complete

