

Flow graph/networks

- Flow network
\square directed, weighted graph (V, E)
- positive edge weights indicating the "capacity" (generally, assume integers)
- contains a single source $s \in V$ with no incoming edges \square contains a single sink/target $t \in \vee$ with no outgoing edges
\square every vertex is on a path from s to t

Flow constraints

\square in-flow $=$ out-flow for every vertex (except s, t)
\square flow along an edge cannot exceed the edge capacity
\square flows are positive

Max flow problem

Given a flow network: what is the maximum flow we can send from s to that meet the flow constraints?

The residual graph
The residual graph G_{f} is constructed from G For each edge e in the original graph (G): if flow(e) < capacity(e) - introduce an edge in G_{f} with capacity = capacity(e)-flow(e) - this represents the remaining flow we can still push if flow(e) >0 - introduce an edge in G_{f} in the opposite direction with capacity $=$ flow(e) - this represents the flow that we can reroute/reverse

Network flow properties
\square If one of these is are true then all are true (i.e. each implies the the others):
$\square \mathrm{f}$ is a maximum flow
$\square G_{f}$ has no paths from s to \dagger
$\square|f|=$ minimum capacity cut

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$G_{f}=$ residualGraph(G)
while a simple path exists from s to t in G_{f} send as much flow along the path as possible $G_{f}=$ residualGraph(G)
return flow

O(max-flow *E)

Can you construct a graph that could get this running time?

Hint:

O(max-flow * E)

Can you construct a graph that could get this running time?

Can you construct a graph that could get this running time?

Faster variants

\square Edmunds-Karp

\square Select the shortest path (in number of edges) from sto t in G_{f}

- How can we do this?
- use BFS for search
\square Running time: $\mathrm{O}\left(\mathrm{VE}^{2}\right)$
- avoids issues like the one we just saw
- see the book for the proof

■ or http://www.cs.cornell.edu/courses/CS4820/2011sp/ handouts/edmondskarp.pdf
\square preflow-push (aka push-relabel) algorithms - O(V)

Application: bipartite graph matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at most once in M

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite graph

Where might this
problem come up?
(A)
-

- CS department has n courses and m faculty
Every instructor can teach some of the courses
- What course should each person teach?
- Anytime we want to match n things with m , but not all things can match

Application: bipartite graph matching
Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite graph

Setup as a flow problem:

Application: bipartite graph matching
\square Is it correct?
\square Assume it's not
\square there is a better matching
\square because of how we setup the graph flow $=\#$ of
matches
\square therefore, the better matching would have a higher
flow
\square contradiction (max-flow algorithm find maximal!)

Application: bipartite graph matching
\square Run-time?
\square Cost to build the flow?
$\square \mathrm{O}$ (E)

- each existing edge gets a capacity of 1
- introduce E new edges (to and from sand t)
\square Max-flow calculation?
- Basic Ford-Fulkerson: O(max-flow * E)
- max-flow $=\mathrm{O}(\mathrm{V})$
- O(V E)

Application: bipartite graph matching

\square Run-time?
\square Cost to build the flow?
$\square \mathrm{O}(\mathrm{E})$

- each existing edge gets a capacity of 1 - introduce E new edges (to and from s and t)
\square Max-flow calculation?
\square Basic Ford-Fulkerson: O(max-flow *E)
\square Edmunds-Karp: $\mathrm{O}\left(\mathrm{V} \mathrm{E}^{2}\right)$
\square Preflow-push: $\mathrm{O}\left(\mathrm{V}^{3}\right)$

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite graph

- CS department has n courses and m faculty
- Every instructor can teach some of the courses
- What course should each person teach?
- Each faculty can teach at most 3 courses a semester?

Change the s and \dagger edge weights to 3

Survey Design
\square Design a survey with the following requirements:
\square Design survey asking n consumers about m products
\square Can only survey consumer about a product if they own it
\square Question consumers about at most q products
\square Each product should be surveyed at most s times
\square Maximize the number of surveys/questions asked
\square How can we do this?

Survey design

\square Is it correct?

- Each of the comments above the flow graph match the problem constraints
\square max-flow finds the maximum matching, given the problem constraints
\square What is the run-time?
\square Basic Ford-Fulkerson: O(max-flow * E)
\square Edmunds-Karp: O(V E²)
\square Preflow-push: $\mathrm{O}\left(\mathrm{V}^{3}\right)$

Edge Disjoint Paths

Two paths are edge-disjoint if they have no edge in common

Edge Disjoint Paths Problem

\square Given a directed graph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint paths from s to \dagger
\square Why might this be useful?
\square edges are unique resources (e.g. communications, transportation, etc.)
\square how many concurrent (non-conflicting) paths do we have from sto \dagger

Edge Disjoint Paths Problem

Given a directed graph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint paths from s to t

Why might this be useful?

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

- max-flow = maximum number of disjoint paths
- correctness:
- each edge can have at most flow $=1$, so can only be traversed once
- therefore, each unit out of s represents a separate path to t

Max-flow variations

What if we have multiple sources and multiple sinks (e.g. the Russian train problem has multiple sinks)?

Max-flow variations

Create a new source and sink and connect up with infinite capacities...

Max-flow variations

For each vertex v
create a new node v '
create an edge with the vertex capacity from v to v '
move all outgoing edges from v to v '

Can you now prove it's correct?

More problems: maximum independent path

Two paths are independent if they have no vertices in common

More problems: maximum independent path

Two paths are independent if they have no vertices in common

More problems: maximum independent path

Find the maximum number of independent paths
Ideas?

More problems: wireless network

- The campus has hired you to setup the wireless network
\square There are currently m wireless stations positioned at various (x, y) coordinates on campus
\square The range of each of these stations is r (i.e. the signal goes at most distance r)
\square Any particular wireless station can only host k people connected
\square You've calculate the n most popular locations on campus and have their (x, y) coordinates
\square Could the current network support n different people trying to connect at each of the n most popular locations (i.e. one person per location)?
\square Prove correctness and state run-time

Another matching problem

Correctness

- If there is flow from a person node to a wireless node then that person is attached to that wireless node
- if $\operatorname{dist}(\mathrm{pi}, \mathrm{wi})<r$ then add an edge from pi to wi with weigth 1 (where dist is euclidean distance)
a only people able to connect to node could have flow
\square add edges s -> pi with weight 1
- each person can only connect to one wireless node
\square add edges wi $->+$ with weight L
- at most L people can connect to a wireless node
\square If flow = m, then every person is connected to a node
Runtime

\quad| E $=\mathrm{O}(\mathrm{mn})$: every person is within range of every |
| :--- |
| |
| node |
| $\square V=m+n+2$ |
| \square max-flow $=O(m)$, s has at most m out-flow |
| $\square O(m a x-f l o w * E)=O\left(m^{2} n\right):$ Ford-Fulkerson |
| $\square O\left(V E^{2}\right)=O\left((m+n) m^{2} n^{2}\right):$ Edmunds-Karp |
| $\square O\left(V^{3}\right)=O\left((m+n)^{3}\right):$ preflow-push variant |

