
4/26/12	

1	

MAX FLOW APPLICATIONS
CS302, Spring 2012 David Kauchak

Flow graph/networks

S

A

B

T

20

20
10

10

30

¨  Flow network
¤  directed, weighted graph (V, E)
¤  positive edge weights indicating the “capacity” (generally,

assume integers)
¤  contains a single source s ∈ V with no incoming edges
¤  contains a single sink/target t ∈ V with no outgoing edges
¤  every vertex is on a path from s to t

Flow constraints

¨  in-flow = out-flow for every vertex (except s, t)
¨  flow along an edge cannot exceed the edge

capacity
¨  flows are positive

S

A

B

T

20

20
10

10

30

Max flow problem

Given a flow network: what is the maximum flow we
can send from s to t that meet the flow constraints?

S

A

B

T

20

20
10

10

30

4/26/12	

2	

The residual graph

¨  The residual graph Gf is constructed from G
¨  For each edge e in the original graph (G):

¤  if flow(e) < capacity(e)
n  introduce an edge in Gf with capacity = capacity(e)-flow(e)
n  this represents the remaining flow we can still push

¤  if flow(e) > 0
n  introduce an edge in Gf in the opposite direction with

capacity = flow(e)
n  this represents the flow that we can reroute/reverse

Residual graph

G

Gf

S

A

B

T

10/10

2/9 2/10

2/4

2

C

D

6

2/10

10/10

8/8

S

A

B

T

7 8

2

2

C

D

6

8
8

10
10

2

2

2 2

Network flow properties

¨  If one of these is are true then all are true (i.e. each
implies the the others):

¨  f is a maximum flow
¨  Gf has no paths from s to t
¨  |f| = minimum capacity cut

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
 flow = 0 for all edges
 Gf = residualGraph(G)
 while a simple path exists from s to t in Gf

 send as much flow along the path as possible
 Gf = residualGraph(G)
 return flow

4/26/12	

3	

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
 flow = 0 for all edges
 Gf = residualGraph(G)
 while a simple path exists from s to t in Gf
 send as much flow along path as possible
 Gf = residualGraph(G)
 return flow

Overall runtime? O(max-flow * E)

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

100

100 100

100

Hint:

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

100

100 100

100

1

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

1/100

1/100 100

100

1/1

4/26/12	

4	

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

1/100

1/100 1/100

1/100

0/1

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

2/100

2/100 1/100

1/100

1/1

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

2/100

2/100 2/100

2/100

0/1

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

3/100

3/100 2/100

2/100

1/1

4/26/12	

5	

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

3/100

3/100 3/100

3/100

0/1

What is the problem here?
Could we do better?

Faster variants

¨  Edmunds-Karp
¤ Select the shortest path (in number of edges) from s to t

in Gf
n How can we do this?

n  use BFS for search

¤ Running time: O(V E2)
n avoids issues like the one we just saw
n  see the book for the proof
n or http://www.cs.cornell.edu/courses/CS4820/2011sp/

handouts/edmondskarp.pdf

¨  preflow-push (aka push-relabel) algorithms
¤ O(V3)

Other variations…

http://en.wikipedia.org/wiki/Maximum_flow

http://akira.ruc.dk/~keld/teaching/
algoritmedesign_f03/Artikler/08/Goldberg88.pdf

Application: bipartite graph matching

Bipartite graph – a graph where every vertex can be partitioned into
two sets X and Y such that all edges connect a vertex u ∈ X and a
vertex v ∈ Y

A

B

C

E

D

F

G

4/26/12	

6	

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

not a
matching

4/26/12	

7	

Application: bipartite graph matching

A matching can be thought of as pairing the vertices

A

B

C

E

D

F

G

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite
graph

A

B

C

E

D

F

G

Where might this
problem come up?

-  CS department has n courses
and m faculty

-  Every instructor can teach
some of the courses

-  What course should each
person teach?

-  Anytime we want to match n
things with m, but not all
things can match

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite
graph

A

B

C

E

D

F

G

ideas?
-  greedy?
-  dynamic programming?

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

4/26/12	

8	

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

edge weights?

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

all edge weights are 1

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

after we find the flow, how do we find the matching?

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

match those nodes with flow between them

4/26/12	

9	

Application: bipartite graph matching

¨  Is it correct?
¨  Assume it’s not

¤  there is a better matching
¤ because of how we setup the graph flow = # of

matches
¤  therefore, the better matching would have a higher

flow
¤ contradiction (max-flow algorithm find maximal!)

Application: bipartite graph matching

¨  Run-time?
¨  Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n  introduce E new edges (to and from s and t)

¨  Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)
¤ Preflow-push: O(V3)

Application: bipartite graph matching

¨  Run-time?
¨  Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n  introduce E new edges (to and from s and t)

¨  Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)

n max-flow = O(V)
n O(V E)

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite
graph

A

B

C

E

D

F

G

-  CS department has n courses
and m faculty

-  Every instructor can teach some
of the courses

-  What course should each person
teach?

-  Each faculty can teach at most 3
courses a semester?

Change the s and t
edge weights to 3

4/26/12	

10	

Survey Design

¨  Design a survey with the following requirements:
¤ Design survey asking n consumers about m products
¤ Can only survey consumer about a product if they own it
¤ Question consumers about at most q products
¤ Each product should be surveyed at most s times
¤ Maximize the number of surveys/questions asked

¨  How can we do this?

Survey Design

c1

c2

c3

p1

c4

p2

p3

S T

consumers products

each consumer can answer
at most q questions

q

q

q

q

capacity 1 edge if
consumer owned product each product can be

questioned about at most
s times

s

s

s

Survey design

¨  Is it correct?
¤ Each of the comments above the flow graph match the

problem constraints
¤ max-flow finds the maximum matching, given the

problem constraints

¨  What is the run-time?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)
¤ Preflow-push: O(V3)

Two paths are edge-disjoint if they have no edge in
common

s

2

3

4

Edge Disjoint Paths

5

6

7

t

4/26/12	

11	

Two paths are edge-disjoint if they have no edge in
common

Edge Disjoint Paths

s

2

3

4

5

6

7

t

Given a directed graph G = (V, E) and two nodes s
and t, find the max number of edge-disjoint paths
from s to t

s

2

3

4

Edge Disjoint Paths Problem

5

6

7

t

Why might this be useful?

¨  Given a directed graph G = (V, E) and two nodes s
and t, find the max number of edge-disjoint paths
from s to t

¨  Why might this be useful?
¤ edges are unique resources (e.g. communications,

transportation, etc.)
¤ how many concurrent (non-conflicting) paths do we have

from s to t

Edge Disjoint Paths Problem

Algorithm ideas?

Edge Disjoint Paths

s

2

3

4

5

6

7

t

4/26/12	

12	

Max flow formulation: assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

What does the max flow represent?
Why?

Max flow formulation: assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

-  max-flow = maximum number of disjoint paths
-  correctness:

-  each edge can have at most flow = 1, so can
only be traversed once

-  therefore, each unit out of s represents a
separate path to t

Max-flow variations

What if we have multiple sources and multiple sinks
(e.g. the Russian train problem has multiple sinks)?

S

S

T

S

T

T

capacity
network

Max-flow variations

Create a new source and sink and connect up with
infinite capacities…

S

S

T

S

T

T

capacity
network S’ T’

4/26/12	

13	

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

20

20
10

10

30

15

10

What is the max-flow now?

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

10/20

10/20
10/10

10/10

30

10/15

10/10

20 units

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

20

20
10

10

30

15

10

How can we solve this problem?

Max-flow variations

For each vertex v
-  create a new node v’

-  create an edge with the vertex capacity from v to v’

-  move all outgoing edges from v to v’

S

A’

B’

T

20

20
10

10

30

15

10

A

B

Can you now prove it’s correct?

4/26/12	

14	

Max-flow variations

¨  Proof: show that if a solution exists in the modified
graph, then a solution exists in the original graph
¤ we know that the vertex constraints are satisfied

n no incoming flow can exceed the vertex capacity since we
have a single edge with that capacity from v to v’

¤ we can obtain the solution, by collapsing each v and v’
back to the original v node
n  in-flow = out-flow since there is only a single edge from v to

v’
n because there is only a single edge from v to v’ and all the

in edges go in to v and out to v’, they can be viewed as a
single node in the original graph

Two paths are independent if they have no vertices in
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t

Two paths are independent if they have no vertices in
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t

Find the maximum number of independent paths

s

2

3

4

More problems:
maximum independent path

5

6

7

t

Ideas?

4/26/12	

15	

Max flow formulation:
-  assign unit capacity to every edge (though any value would work)
-  assign unit capacity to every vertex

maximum independent path

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

Same idea as the maximum edge-disjoint paths,
but now we also constrain the vertices

1 1

1

1

1

1

More problems: wireless network

¨  The campus has hired you to setup the wireless network
¨  There are currently m wireless stations positioned at various

(x,y) coordinates on campus
¨  The range of each of these stations is r (i.e. the signal goes

at most distance r)
¨  Any particular wireless station can only host k people

connected
¨  You’ve calculate the n most popular locations on campus and

have their (x,y) coordinates
¨  Could the current network support n different people trying

to connect at each of the n most popular locations (i.e. one
person per location)?

¨  Prove correctness and state run-time

Another matching problem

S

p1
w1

T

1 k

add edge if
dist(pi, wj) < r

pn

…

¨  n people nodes and n station nodes
¨  if dist(pi,wj) < r then add an edge from pi to wj with weigth 1

(where dist is euclidean distance)
¨  add edges s -> pi with weight 1
¨  add edges wj -> t with weight k

wm

…

1 k

-  solve for max-flow
-  check if flow = m

Correctness

¨  If there is flow from a person node to a wireless node then that
person is attached to that wireless node

¨  if dist(pi,wj) < r then add an edge from pi to wj with weigth 1

(where dist is euclidean distance)
¤  only people able to connect to node could have flow

¨  add edges s -> pi with weight 1
¤  each person can only connect to one wireless node

¨  add edges wj -> t with weight L
¤  at most L people can connect to a wireless node

¨  If flow = m, then every person is connected to a node

4/26/12	

16	

Runtime

¨  E = O(mn): every person is within range of every
node

¨  V = m + n + 2
¨  max-flow = O(m), s has at most m out-flow

¨  O(max-flow * E) = O(m2n): Ford-Fulkerson
¨  O(VE2) = O((m+n)m2n2): Edmunds-Karp

¨  O(V3) = O((m+n)3): preflow-push variant

