2/16/12

Big O

000
David Kauchak ::o
cs302 | e

Spring 2012

Administrative

e Assignment 1: how’d it go?
e Assignment 2: out soon...
e Lab code

Asymptotic notation

e How do you answer the question: “what is the
running time of algorithm x?”

o We need a way to talk about the computational cost
of an algorithm that focuses on the essential parts
and ignores irrelevant details

e We’ ve seen some of this already:

o linear
e nlogn
o n?

Asymptotic notation

e Precisely calculating the actual steps is tedious
and not generally useful

¢ Different operations take different amounts of
time. Even from run to run, things such as
caching, etc. cause variations

e Want to identify categories of algorithmic
runtimes

2/16/12

oo eoo
eo0e (1 X]
o0 o0
. . .
For example... Runtime examples
e f,(n) takes n? steps
n nlogn n? n° 2" n!
[fz(n) takes 2n + 100 Steps n=10 <lsec <1lsec < 1sec < 1sec < 1sec 4 sec
n =30 <lsec <lsec < 1sec < 1 sec <18 min 10% years
° f3(n) takes 3n+1 StepS n =100 <lsec <1lsec 1sec 1s 107 years very long
n = 1000 <lsec < 1lsec 1sec 18 min very long very long
n = 10,000 <lsec < 1lsec 2min 12 days very long very long
. . . n = 100, 000 <lsec 2sec 3 hours 32 years very long very long
e Which algorithm is better? n=1,000,000 | lsec 20sec 12days 31,710 years verylong very long
. . adapted from [2], Table 2.1, pg. 34
e Is the difference between f, and f, important/ (adapted from (2], Table 2.1, pg. 34)
significant?
oo eoo
eo0e (1 X]
o0 o0
. °

Big O: Upper bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that

Olg(m) = { f: 0= f(n)=scg(n) forall n=n,

|

Big O: Upper bound
e O(g(n)) is the set of functions:
O(g(n))j[f(n):
We can bound the function f(n)

above by some constant factor
of g(n)

there exists positive constants ¢ and n, such that
Os_rallnan

2/16/12

Big O: Upper bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that

Ols(m) ={ f: 0=, \(n) < cg(n)@r all)GnD

For some increasing
range

We can bound the function f(n)
above by some constant
multiplied by g(n)

|

Big O: Upper bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that

Olg(m) =1[f: 0= f(n)=cg(n) forall n=n,

filx) = 3n’
O(n2)=f2(x) 1/22n2+100

fi(x) = n +5n+40

fix) = 6

Big O: Upper bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that

Ol(m) ={ f: 0= f(n)=scg(n) forall n=n,

Generally, we're most interested in
big O notation since it is an upper
bound on the running time

|

Omega: Lower bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that
Q(g(m)=q f(n): e
0scg(n)s= f(n) forall nz=n,

|

2/16/12

Omega: Lower bound

e O(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that
Qg(m) =1 f(n):
0=d orall n=n,

We can bound the function f(n)
below by some constant factor

of g(n)

Omega: Lower bound
e O(g(n)) is the set of functions:

Qg(m)=y fn):

there exists positive constants ¢ and n, such that }

0scg(n)s= f(n) forall nz=n,

Si(x) 3n®
_fr(x) 1/2n* +100
_f3(x) = n*+51+40

Ji(¥) 6n’

Q(n’)

Theta: Upper and lower bound
e O(g(n)) is the set of functions:

Olg(m) =1 fm): 0=cg(n) = f(n)=c,g(n) forall n=n,

there exists positive constants c¢,,c, and n, such that

Theta: Upper and lower bound

e O(g(n)) is the set of functions:

there exists positive constants c¢,,c, and n, such that
O(g(m) =y f(n):
0= alln=n,

We can bound the function f(n)
above and below by some
constant factor of g(n) (though
different constants)

2/16/12

Theta: Upper and lower bound

e O(g(n)) is the set of functions:

there exists positive constants c¢,,c, and n, such that
O(g(m)=1 f(m: !
0=c,g(n) = f(n)=c,g(n) forall n=n,

Note: A function is theta bounded iff it is big O
bounded and Omega bounded

Theta: Upper and lower bound

e O(g(n)) is the set of functions:

there exists positive constants c¢,,c, and n, such that
O(gm)=1 fn): .
0=cgn) = f(n)=c,g(n) foralln=n,

Hx) = 3n*
@(n2)=f2(x) = 1/22n2+100

fi(x) = n +5n+40

fi(x) = 3n*+nlogn

Visually

f(n)

Visually: upper bound

f(n)

2/16/12

Visually: lower bound

f(%/%

worst-case vs. best-case vs. o
average-case

e worst-case: what is the worst the running time of the
algorithm can be?

e best-case: what is the best the running time of the
algorithm can be?

e average-case: given random data, what is the
running time of the algorithm?

e Don’ t confuse this with O, Q and ©. The cases
above are situations, asymptotic notation is about
bounding particular situations

Proving bounds: find constants e

that satisfy inequalities

e Show that 5n?— 15n + 100 is ©(n?)

e Step 1: Prove O(n?) — Find constants ¢ and n,
such that 5n2— 15n + 100 < cn? for all n > n,

cn® = 5n*-15n+100
¢ = 5-15/n+100/n*
Letn,=1and c=5+ 100 = 105.

100/n2 only get smaller as n increases and we
ignore -15/n since it only varies between -15 and 0

Proving bounds

e Step 2: Prove Q(n?) — Find constants ¢ and n,
such that 5n?— 15n + 100 2 cn? for all n > n,,
e’ = 5n*-15n+100
¢ = 5-15/n+100/n*

Let n,=4 and ¢ = 5 — 15/4 = 1.25 (or anything less
than 1.25). We can ignore 100/n? since it is always
positive and 15/n is always decreasing.

2/16/12

Bounds
Is 5n* O(n)? No

How would we prove it?

. there exists positive constants ¢ and n, such that
O(g(m) =1 f(m):
0= f(n)=cg(n) forall n=n,

Disproving bounds

Is 5n* O(n)?

there exists positive constants ¢ and n,, such that
O(gm)=q f(n):
0= f(n)=cg(n) forall n=n,

Assume it's true. That means there exists some ¢ and n,such that
2
S5n” =cn forn>n,

Sn=c contradiction!

Some rules of thumb

e Multiplicative constants can be omitted
o 14n? becomes n?
e 7 log n become log n

e Lower order functions can be omitted
e n+5becomesn
e n? + n becomes n?

e n? dominates n?ifa> b
o n? dominates n, so n?+n becomes n?
o n'’5dominates n’4

Some rules of thumb

e a"dominates b"ifa > b
o 37" dominates 2"
e Any exponential dominates any polynomial
e 37 dominates n°
e 2" dominates n°®
e Any polynomial dominates any logorithm
o ndominates log n or log log n
e n?dominates n log n
e n'2dominates log n
e Do not omit lower order terms of different variables
(n? + m) does not become n2

2/16/12

Big O

en?+nlogn+50
e 2"-15n2+ ndlog n
e nl%9" + n2 + 15n3

en5-n!+nn

Some examples

e O(1) — constant. Fixed amount of work,
regardless of the input size
o add two 32 bit numbers
o determine if a number is even or odd
o sum the first 20 elements of an array
o delete an element from a doubly linked list

e O(log n) — logarithmic. At each iteration,
discards some portion of the input (i.e. half)
o binary search

Some examples

e O(n) — linear. Do a constant amount of work
on each element of the input
o find an item in a linked list
o determine the largest element in an array

e O(n log n) log-linear. Divide and conquer
algorithms with a linear amount of work to
recombine
o Sort a list of number with MergeSort
o FFT

Some examples

e O(n?) — quadratic. Double nested loops that
iterate over the data
o Insertion sort
e O(2") — exponential
o Enumerate all possible subsets
o Traveling salesman using dynamic programming
e O(n!)
o Enumerate all permutations
o determinant of a matrix with expansion by minors

2/16/12

Divide and Conquer

e Divide: Break the problem into smaller
subproblems

e Conquer: Solve the subproblems. Generally,
this involves waiting for the problem to be small
enough that it is trivial to solve (i.e. 1 or 2 items)

e Combine: Given the results of the solved
subproblems, combine them to generate a
solution for the complete problem

Divide and Conquer: some 1
thoughts

e Often, the sub-problem is the same as the original
problem

e Dividing the problem in half frequently does the job
e May have to get creative about how the data is split

e Splitting tends to generate run times with log n in them

Divide and Conquer: Sorting

e How should we split the data?
e What are the subproblems we need to solve?

e How do we combine the results from these
subproblems?

MergeSort H

MERGE-SORT(A)

1 if length[A] ==1

return A

3 else
4 q + |length[A] /2]
5 create arrays L(1..q] and R[g+ 1.. length[A]]
6 copy A[l..g] to L

7 copy Alg + 1.. length[A]] to R
8 LS + MERGE-SORT(L)
9 RS + MERGE-SORT(R)
0 return MERGE(LS, RS)

—_

2/16/12

(]
- L]
MergeSort: Merge :
o0
. Merge S
e Assuming L and R are sorted already, merge
the two to create a single sorted arra
9 y L1358 R2467
MERGE(L, R)
1 create array B of length length[L] + length[R]
2 i+1
3 j+«1
4 for k +1 to length|B]]\im‘:f[xL-‘?-)r ¢ B of length length|L] + length(R]
5 if j > length[R] or (i < length[L] and L[i] < R[j]) g gy B ot enat S e
6 Blk] «+ L[4 3 1 "
. . 4 for k « 1 to length[B
7 teitl 5 if > lfnqth[ll] or (i < length[L] and L[i] < RJj])
8 else 6 Bk — L[i]
9 Bk « R[j] 7 L, i
10 jj+1 0 BIK — RIj|
11 return B 10 jej+1
11 return B
L[]
L]
L]
L)
o0
Merge Merge :
i i
111358 Ri2467 L:1358 Ri2467
‘ B: ‘ B:
MEerGE(L. R) MEerGE(L, R)
1 create array B of length length|[L] + length[R] | 1_create array B of length length| L] + length[R]
T 1—1 2 i1
. s
4 for k — 1 to length[B] T for k— I to length|B]
5 if j > length[R] or (i < length[L] and L[i] < R[j]) 5 if j > length[R] or (i < length[L] and L[i] < R[j])
6 Bk — L[i) 6 Bk — L[i]
7 ie—i41 7 ie—i41
8 else 8 else
9 Bl — RIj] 9 Bk — Rlj]
10 je—i+1 10 je—ij+1

11 return B

11 return B

10

2/16/12

Merge
l}

Merge
l}

] |
L:1358 R:2467 L:1358 R:2467
B: [B:1

MERGE(L, R) MEerGE(L, R)

1 create array B of length length|L] + length[R] 1 create array B of length length|L] + length[R]

2 i1 2 i1

3 je1 3 1

4 fork 1 to length(R] 4 for k — 1 to length[B)

5 if j > length[R] or (i < length[L] and L[i] < R[j]| 5 if j > length[R] or (i < length[L] and L[i] < R[j])

G Bk — L] g Bk — L[]

7 ie—it1 7 it 1

8 else S oTse

9 Blk] — R[j] 9 Blk] — RIj]
10 jei+l 10 jei+1
11 return B 11 return B

L]
o0
Merge :
| } i
L:1358 R:2467 R:2467

[B:1

ate array B of length length|[L] + length[R]
2 i1

3 je—1

4 for k1 to length[B]
5

6

7

if j > length|R] or (i < length|L] and Li] < R[j]]

ay B of length length|L] + length[R]

2
3

4 for k — 1 to length|B]
5 if j > length|R] or (i < length[L] and L[i] < R[j])
6

7

B — L[]
ie—i41
8 else
9 BlK) — RIj]
10 je—i+1
11 return B

Bk — L[]
icitl
B else
9 Bk — RIj]
0 je—i+1
T return B

1

2/16/12

Merge

i } i
L:1358 R:2467 L:1358 R:2 467
B:12 [B:123
MERGE(L, R) MEerGE(L, R)
1 create array B of length length|L] + length[R] 1 create array B of length length|L] + length[R]
2 i1 2 i1
3 je1 3 1
4 fork 1 to length(R] 4 for k — 1 to length[B)
5 if j > length[R] or (i < length[L] and L[i] < R[j]| 5 if j > length[R] or (i < length[L] and L[i] < R[j])
G B[] — L[i) G B[] — L[i)
7 ie—it1 7 it 1
8 else S oTse
9 Bk] — Rlj] 9 Bk] — Rlj]
10 jei+l 10 je—i+l
11 return B 11 return B
) i i
L:1358 R:2467 R:2 467
[B:123
L.R)
ate array B of length length|L] + length[R)] ay B of length length[L] + length[R)
2 i1 2
3 je1 3
4 fork 1 to length(R] 4 for k — 1 to length[B)
5 if j > length[R] or (i < length[L] and L[i] < R[j]| 5 if j > length[R] or (i < length[L] and L[i] < R[j])
G B[] — L[i) 6 Blk] — LJi]
7 ie—it1 7 i—it 1
8 else B else
9 Blk] — R[j] 9 Blk] — RIj]
10 jei+l 0 j—i+l
11 return B T return B

12

2/16/12

' !
L:1358 Ri2467
[B:1234

1 create array B of length length|[L] + length[R]
2 i1

3 je—1

4 for k1 to length[B]
5

6

7

if j > length|R] or (i < length|L] and Li] < R[j]]

Bk — L[]
it
8 else
9 Bk — RIj]
10 i+l

11 return B

Merge

| '
L:1358 Ri2467
[B:12345

if j > length|R] or (i < length[L] and L[i] < R[j])

2
3
4 for k — 1 to length|B]
5
6
7

Bk — L[]
i it
3 else
0 Bk — RIj]
10 i+l

11 return B

Merge

| !
L:1358 Ri2467
[B:12345

E(L,R)

- array B of length length|L] + length[R]

i—1

1

2

3 je—1

4 for k1 to length[B]
5

6

7

if j > length|R] or (i < length|L] and Li] < R[j]]

Bk — L[]
it
8 else
9 Bk — RIj]
10 i+l

11 return B

Merge

| I
L:1358 Ri2467
[B:123456

MEerGE(L, R)
e array B of length length|L] + length[R]
2 i1

3 je1

4 for k — 1 to length[B]
5

6

7

if j > length|R] or (i < length[L] and L[i] < R[j])

Bk — L[]
icitl
B else
9 Bk — RIj]
0 je—i+1
T return B

13

2/16/12

Merge

Merge

| | } I
L:1358 Ri2467 L1358 Ri2467
[B:123456 [B:1234567
MEerGE(L, R) (L, R)
1 create array B of length length|L] + length[R] te array B of length length[L] + length[R)
2 i1 2 i1
3 je—1 3 je1
4 for k1 to length[B] 4 for k — 1 to length[B]
5 if j > length|R] or (i < length|L] and Li] < R[j]] 5 if j > length|R] or (i < length[L] and L[i] < R[j])
G B — L[] 6 Bk — L[i]
7 ie—i+1 7 it 1
8 else 8 else
9 Blk] — R[j] 9 Blk] — RIj]
10 Jeitl 0 RS
11 return B 1 return B
o0
Merge Merge :
! } } I
L:1358 Ri2467 L1358 R2467
[B:1234567 [B:12345678

MEerGE(L, R)

1 create array B of length length|L] + length[R]
2 i1

3 je1

4 for k1 to length[B]

5 if j > length|R] or (i < length|L] and Li] < R[j]]
G B — L[

7 Pe—i+1

8 else

9 Bk — Rlj|
10 je g+l
11 return B

MEerGE(L, R)

1 create array B of length length|L] + length[R]
2 i1

3 je1

4 for k — 1 to length|B]

5 if j > length|R] or (i < length[L] and L[i] < R[j])
G BIF — L[]

7 Pl

g else

9 Blk) — RIj]
10 jedi+l

11 return B

14

2/16/12

Merge

e Does the algorithm terminate?

Merge

e Is it correct?
o Loop invariant:

MERGE(L, R) MERGE(L, R)
1 create array B of length length[L] + length[R)] 1 create array B of length length[L] + length[R]
2 i+1 2 i1
3 je1 3 je1
4 for k + 1 to length[B] 4 for k + 1 to length[B]
5 if j > length[R] or (i < length[L] and L[] < R[j]) 5 if j > length[R] or (i < length[L] and L[i] < R[j])
6 Blk] « Li] 6 BlK] « L}i]
7 i1+1 7 ii+1
8 else 8 else
9 Blk] « RIj] 9 B[K] < R[j]

10 jej+l 10 jej+1

11 return B 11 return B

Merge Merge
e Is it correct? o Running time?
o Loop invariant: At the beginning of the for loop of lines
4-10 the first k-1 elements of B are the smallest k-1
elements from L and R in sorted order.

MERGE(L, R) MERGE(L, R)
1 create array B of length length[L] + length[R)] 1 create array B of length length[L] + length[R)
2 i1 2 i1
3 je1 3 je1
4 for k + 1 to length[B] 4 for k + 1 to length[B]
5 if j > length[R] or (i < length[L] and L[] < R[j]) 5 if j > length[R] or (i < length[L] and L[i] < R[j])
6 Blk] « Li] 6 BlK] « L}i]
7 i1+1 7 ii+1
8 else 8 else
9 Blk] « RIj] 9 B[K] < R[j]

10 jej+l 10 jej+1

11 return B 11 return B

15

2/16/12

Merge

e Running time? O(n) - linear

MERGE(L, R)
1 create array B of length length[L] + length[R)]
2 i+1
3 je1
4 for k + 1 to length[B]
5 if j > length[R] or (i < length[L] and L[] < R[j])
6 Blk] « L[i)
7 i1+1
8 else
9 Blk] + Rl[j]
10 jei+l
11 return B

16

