
2/16/12

1

Big O

David Kauchak
cs302

Spring 2012

Administrative
l  Assignment 1: how’d it go?
l  Assignment 2: out soon…
l  Lab code

Asymptotic notation
l  How do you answer the question: “what is the

running time of algorithm x?”
l  We need a way to talk about the computational cost

of an algorithm that focuses on the essential parts
and ignores irrelevant details

l  We’ve seen some of this already:
l  linear
l  n log n
l  n2

Asymptotic notation
l  Precisely calculating the actual steps is tedious

and not generally useful

l  Different operations take different amounts of
time. Even from run to run, things such as
caching, etc. cause variations

l  Want to identify categories of algorithmic
runtimes

2/16/12

2

For example…

l  f1(n) takes n2 steps
l  f2(n) takes 2n + 100 steps
l  f3(n) takes 3n+1 steps

l  Which algorithm is better?
l  Is the difference between f2 and f3 important/

significant?

Runtime examples

Big O: Upper bound

l  O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

Big O: Upper bound

l  O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n)
above by some constant factor
of g(n)

2/16/12

3

Big O: Upper bound

l  O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n)
above by some constant
multiplied by g(n)

For some increasing
range

Big O: Upper bound

l  O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

nxf
nnxf

nxf
nxf

nO

6)(
405)(
1002/1)(

3)(

)(

4

2
3

2
2

2
1

2

=

++=

+=

=

=

Big O: Upper bound

l  O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

Generally, we’re most interested in
big O notation since it is an upper
bound on the running time

Omega: Lower bound

l  Ω(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 " cg(n) " f (n) for all n # n0

$
%
&

'&

(
)
&

*&

2/16/12

4

Omega: Lower bound

l  Ω(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 " cg(n) " f (n) for all n # n0

$
%
&

'&

(
)
&

*&

We can bound the function f(n)
below by some constant factor
of g(n)

Omega: Lower bound

l  Ω(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 " cg(n) " f (n) for all n # n0

$
%
&

'&

(
)
&

*&

3
4

2
3

2
2

2
1

2

6)(
405)(
1002/1)(

3)(

)(

nxf
nnxf

nxf
nxf

n

=

++=

+=

=

=Ω

Theta: Upper and lower bound

l  Θ(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c1,c2 and n0 such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0

$
%
&

'&

(
)
&

*&

Theta: Upper and lower bound

l  Θ(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c1,c2 and n0 such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0

$
%
&

'&

(
)
&

*&

We can bound the function f(n)
above and below by some
constant factor of g(n) (though
different constants)

2/16/12

5

Theta: Upper and lower bound

l  Θ(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c1,c2 and n0 such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0

$
%
&

'&

(
)
&

*&

Note: A function is theta bounded iff it is big O
bounded and Omega bounded

Theta: Upper and lower bound

l  Θ(g(n)) is the set of functions:

!(g(n)) = f (n) :
there exists positive constants c1,c2 and n0 such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0

$
%
&

'&

(
)
&

*&

nnnxf
nnxf

nxf
nxf

n

log3)(
405)(
1002/1)(

3)(

)(

2
4

2
3

2
2

2
1

2

+=

++=

+=

=

=Θ

Visually

f(n)

Visually: upper bound

n0

f(n)

2/16/12

6

Visually: lower bound

n0

f(n)

worst-case vs. best-case vs.
average-case

l  worst-case: what is the worst the running time of the
algorithm can be?

l  best-case: what is the best the running time of the
algorithm can be?

l  average-case: given random data, what is the
running time of the algorithm?

l  Don’t confuse this with O, Ω and Θ. The cases
above are situations, asymptotic notation is about
bounding particular situations

Proving bounds: find constants
that satisfy inequalities

l  Show that 5n2 – 15n + 100 is Θ(n2)
l  Step 1: Prove O(n2) – Find constants c and n0

such that 5n2 – 15n + 100 ≤ cn2 for all n > n0

100155 22 +−≥ nncn
2/100/155 nnc +−≥

Let n0 =1 and c = 5 + 100 = 105.
100/n2 only get smaller as n increases and we
ignore -15/n since it only varies between -15 and 0

Proving bounds

l  Step 2: Prove Ω(n2) – Find constants c and n0
such that 5n2 – 15n + 100 ≥ cn2 for all n > n0

100155 22 +−≤ nncn
2/100/155 nnc +−≤

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less
than 1.25). We can ignore 100/n2 since it is always
positive and 15/n is always decreasing.

2/16/12

7

Bounds
Is 5n2 O(n)? No

How would we prove it?

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

Disproving bounds

Is 5n2 O(n)?

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

Assume it’s true. That means there exists some c and n0 such that

5n2 ! cn for n > n0

5n ! c contradiction!

Some rules of thumb
l  Multiplicative constants can be omitted

l  14n2 becomes n2

l  7 log n become log n
l  Lower order functions can be omitted

l  n + 5 becomes n
l  n2 + n becomes n2

l  na dominates nb if a > b
l  n2 dominates n, so n2+n becomes n2

l  n1.5 dominates n1.4

Some rules of thumb
l  an dominates bn if a > b

l  3n dominates 2n

l  Any exponential dominates any polynomial
l  3n dominates n5

l  2n dominates nc

l  Any polynomial dominates any logorithm
l  n dominates log n or log log n
l  n2 dominates n log n
l  n1/2 dominates log n

l  Do not omit lower order terms of different variables
(n2 + m) does not become n2

2/16/12

8

Big O

l  n2 + n log n + 50

l  2n -15n2 + n3 log n

l  nlog n + n2 + 15n3

l  n5 - n! + nn

Some examples

l  O(1) – constant. Fixed amount of work,
regardless of the input size
l  add two 32 bit numbers
l  determine if a number is even or odd
l  sum the first 20 elements of an array
l  delete an element from a doubly linked list

l  O(log n) – logarithmic. At each iteration,
discards some portion of the input (i.e. half)
l  binary search

Some examples

l  O(n) – linear. Do a constant amount of work
on each element of the input
l  find an item in a linked list
l  determine the largest element in an array

l  O(n log n) log-linear. Divide and conquer
algorithms with a linear amount of work to
recombine
l  Sort a list of number with MergeSort
l  FFT

Some examples
l  O(n2) – quadratic. Double nested loops that

iterate over the data
l  Insertion sort

l  O(2n) – exponential
l  Enumerate all possible subsets
l  Traveling salesman using dynamic programming

l  O(n!)
l  Enumerate all permutations
l  determinant of a matrix with expansion by minors

2/16/12

9

Divide and Conquer
l  Divide: Break the problem into smaller

subproblems
l  Conquer: Solve the subproblems. Generally,

this involves waiting for the problem to be small
enough that it is trivial to solve (i.e. 1 or 2 items)

l  Combine: Given the results of the solved
subproblems, combine them to generate a
solution for the complete problem

Divide and Conquer: some
thoughts
l  Often, the sub-problem is the same as the original

problem

l  Dividing the problem in half frequently does the job

l  May have to get creative about how the data is split

l  Splitting tends to generate run times with log n in them

Divide and Conquer: Sorting

l  How should we split the data?
l  What are the subproblems we need to solve?

l  How do we combine the results from these
subproblems?

MergeSort

2/16/12

10

MergeSort: Merge
l  Assuming L and R are sorted already, merge

the two to create a single sorted array

Merge
R: 2 4 6 7 L: 1 3 5 8

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

2/16/12

11

Merge
R: 2 4 6 7 L: 1 3 5 8

B:

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2

2/16/12

12

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4

2/16/12

13

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6

2/16/12

14

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7

Merge
R: 2 4 6 7 L: 1 3 5 8

B: 1 2 3 4 5 6 7 8

2/16/12

15

Merge
l  Does the algorithm terminate?

Merge

l  Is it correct?
l  Loop invariant: At the end of each iteration of the for loop

of lines 4-10 the subarray B[1..k] contains the smallest k
elements from L and R in sorted order.

Merge

l  Is it correct?
l  Loop invariant: At the beginning of the for loop of lines

4-10 the first k-1 elements of B are the smallest k-1
elements from L and R in sorted order.

Merge

l  Running time?

2/16/12

16

Merge

l  Running time? Θ(n) - linear

