

Administrative

- Assignment 1: how'd it go?
- Assignment 2: out soon...
- Lab code

Asymptotic notation

- How do you answer the question: "what is the running time of algorithm x ?"
- We need a way to talk about the computational cost of an algorithm that focuses on the essential parts and ignores irrelevant details
- We' ve seen some of this already:
- linear
- $n \log n$
- n^{2}

Asymptotic notation

- Precisely calculating the actual steps is tedious and not generally useful
- Different operations take different amounts of time. Even from run to run, things such as caching, etc. cause variations
- Want to identify categories of algorithmic runtimes

For example...

Runtime examples				:\%\%
$n=10$ $n=30$ $n=100$ $n=100$ $n=1000$ $n=10,00$ $n=10,000$ $n=1,000,000$ and				

Big O: Upper bound

- $O(g(n))$ is the set of functions: $O(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

Big O: Upper bound

- $O(g(n))$ is the set of functions:
$O(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

We can bound the function $f(n)$ above by some constant factor of $g(n)$

Big O: Upper bound

- $O(g(n))$ is the set of functions:

Big O: Upper bound

- $O(g(n))$ is the set of functions:

$f_{1}(x)=3 n^{2}$
$O\left(n^{2}\right)=f_{2}(x)=1 / 2 n^{2}+100$
$f_{3}(x)=n^{2}+5 n+40$
$f_{4}(x)=6 n$

Big O: Upper bound

- $O(g(n))$ is the set of functions: $O(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

Omega: Lower bound

- $\Omega(g(n))$ is the set of functions:
$\Omega(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right\}$

Omega: Lower bound

- $\Omega(g(n))$ is the set of functions:
$\Omega(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right\}$

$$
f_{1}(x)=3 n^{2}
$$

$$
\Omega\left(n^{2}\right)=\begin{aligned}
& f_{2}(x)=1 / 2 n^{2}+100 \\
& f_{3}(x)=n^{2}+5 n+40
\end{aligned}
$$

$$
f_{4}(x)=6 n^{3}
$$

Theta: Upper and lower bound

- $\Theta(g(n))$ is the set of functions:
$\Theta(g(n))= \begin{cases}f(n): \begin{array}{l}\text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\ 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\end{array}\end{cases}$

Theta: Upper and lower bound

- $\Theta(g(n))$ is the set of functions:

- $\Theta(g(n))$ is the set of functions:
$\Theta(g(n))= \begin{cases}f(n): \begin{array}{l}\text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\ 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\end{array}\end{cases}$

Note: A function is theta bounded iff it is big O bounded and Omega bounded

Theta: Upper and lower bound

- $\Theta(g(n))$ is the set of functions:

$$
\Theta(g(n))= \begin{cases}f(n): \begin{array}{l}
\text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
\end{array}\end{cases}
$$

$$
f_{1}(x)=3 n^{2}
$$

$$
\Theta\left(n^{2}\right)=\begin{aligned}
& f_{2}(x)=1 / 2 n^{2}+100 \\
& f_{3}(x)=n^{2}+5 n+40
\end{aligned}
$$

$$
f_{4}(x)=3 n^{2}+n \log n
$$

Proving bounds: find constants that satisfy inequalities

- Show that $5 n^{2}-15 n+100$ is $\Theta\left(n^{2}\right)$
- Step 1: Prove $\mathrm{O}\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \leq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \geq 5 n^{2}-15 n+100 \\
c & \geq 5-15 / n+100 / n^{2}
\end{aligned}
$$

Let $n_{0}=1$ and $c=5+100=105$.
$100 / n^{2}$ only get smaller as n increases and we ignore $-15 / n$ since it only varies between -15 and 0

worst-case vs. best-case vs. average-case

- worst-case: what is the worst the running time of the algorithm can be?
- best-case: what is the best the running time of the algorithm can be?
- average-case: given random data, what is the running time of the algorithm?
- Don't confuse this with O, Ω and Θ. The cases above are situations, asymptotic notation is about bounding particular situations

Proving bounds

- Step 2: Prove $\Omega\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \geq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \leq 5 n^{2}-15 n+100 \\
c & \leq 5-15 / n+100 / n^{2}
\end{aligned}
$$

Let $n_{0}=4$ and $c=5-15 / 4=1.25$ (or anything less than 1.25). We can ignore $100 / \mathrm{n}^{2}$ since it is always positive and $15 / \mathrm{n}$ is always decreasing.

Disproving bounds	Is $5 n^{2} O(n) ?$ $O(g(n))= \begin{cases}f(n): & \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array} \\ \text { Assume it's true. That means there exists some } c \text { and } n_{0} \text { such that }\end{cases}$ $5 n^{2} \leq c n$ for $n>n_{0}$ $5 n \leq c$ contradiction!

Some rules of thumb

- Multiplicative constants can be omitted

Some rules of thumb

- a^{n} dominates b^{n} if $a>b$
- 3^{n} dominates 2^{n}
- Any exponential dominates any polynomial
- 3^{n} dominates n^{5}
- 2^{n} dominates n^{c}
- Any polynomial dominates any logorithm
- n dominates $\log n$ or $\log \log n$
- n^{2} dominates $n \log n$
- $n^{1 / 2}$ dominates $\log n$
- Do not omit lower order terms of different variables $\left(n^{2}+m\right)$ does not become n^{2}

Big 0

- $\mathrm{n}^{2}+\mathrm{n} \log \mathrm{n}+50$
- $2^{n}-15 n^{2}+n^{3} \log n$
- $\mathrm{n}^{\log \mathrm{n}}+\mathrm{n}^{2}+15 \mathrm{n}^{3}$
- $n^{5}-n!+n^{n}$

Some examples

- $O(1)$ - constant. Fixed amount of work, regardless of the input size
- add two 32 bit numbers
- determine if a number is even or odd
- sum the first 20 elements of an array
- delete an element from a doubly linked list
- $\mathrm{O}(\log n)$ - logarithmic. At each iteration, discards some portion of the input (i.e. half)
- binary search

Some examples

Some examples

- $\mathrm{O}\left(n^{2}\right)$ - quadratic. Double nested loops that iterate over the data - Insertion sort
- $O\left(2^{n}\right)$ - exponential
- Enumerate all possible subsets
- Traveling salesman using dynamic programming
- O(n!)
- Enumerate all permutations
- determinant of a matrix with expansion by minors

Divide and Conquer

- Divide: Break the problem into smaller subproblems
- Conquer: Solve the subproblems. Generally, this involves waiting for the problem to be small enough that it is trivial to solve (i.e. 1 or 2 items)
- Combine: Given the results of the solved subproblems, combine them to generate a solution for the complete problem

Divide and Conquer: some thoughts

- Often, the sub-problem is the same as the original problem
- Dividing the problem in half frequently does the job
- May have to get creative about how the data is split
- Splitting tends to generate run times with $\log n$ in them

Divide and Conquer: Sorting

- How should we split the data?
- What are the subproblems we need to solve?
- How do we combine the results from these subproblems?

MergeSort

```
Merge-Sort(A)
    if length[A]== 1
        return A
    else
        q\leftarrow\lfloorlength[A]/2\rfloor
        create arrays L[1..q] and R[q+1.. length[A]]
        copy A[1..q] to L
        opy A[q+1.. length[A]] to }
        LS}\leftarrow\mathrm{ Merge-Sort(L)
        RS\leftarrowMErge-Sort(R)
        return Merge(LS, RS)
```


MergeSort: Merge
 - Assuming L and R are sorted already, merge the two to create a single sorted array
 $\operatorname{Merge}(L, R)$
 create array B of length length $[L]+$ length $[R]$
 $i \leftarrow 1$
 $j \leftarrow 1$
 for $k \leftarrow 1$ to length $[B]$
 if $j>$ length $[R]$ or $(i \leq$ length $[L]$ and $L[i] \leq R[j])$
 $B[k] \leftarrow L[i]$
 $i \leftarrow i+1$
 else
 $B[k] \leftarrow R[j]$
 $j \leftarrow j+1$
 return B

Merge	: $\because: 80$
L: 1358 R: 2467	
B:	
$\operatorname{Merge}(L, R)$	
1 create array B of length length $[L]+$ length $[R]$	
4 for $k \leftarrow 1$ to length $[B]$	
$7 \quad i \leftarrow i+1$	
8 else	
11 return B	

Merge - Does the algorithm terminate?	
```\(\operatorname{Merge}(L, R)\) create array B of length length \([L]+\) length \([R]\) \(i \leftarrow 1\) \(j \leftarrow 1\) for \(k \leftarrow 1\) to length \([B]\) if \(j>\) length \([R]\) or \((i \leq l e n g t h[L]\) and \(L[i] \leq R[j])\) \(B[k] \leftarrow L[i]\) \(i \leftarrow i+1\) else \(B[k] \leftarrow R[j]\) \(j \leftarrow j+1\) return B```	

## Merge

- Is it correct?
- Loop invariant:
$\operatorname{Merge}(L, R)$
create array B of length length $[L]+$ length $[R]$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow 1$ to length $[B]$
if $j>$ length $[R]$ or $(i \leq$ length $[L]$ and $L[i] \leq R[j])$
$B[k] \leftarrow L[i]$
else
$B[k] \leftarrow R[j]$
return $B$
- Is it correct?
- Loop invariant: At the beginning of the for loop of lines $4-10$ the first $k-1$ elements of $B$ are the smallest $k-1$ elements from $L$ and $R$ in sorted order.
$\operatorname{Merge}(L, R)$
create array B of length length $[L]+$ length $[R]$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow 1$ to length $[B$
if $j>$ length $[R]$ or $(i \leq$ length $[L]$ and $L[i] \leq R[j])$ $B[k] \leftarrow L[i]$
$i \leftarrow i+1$
else
$B[k] \leftarrow R[j]$
$j \leftarrow j+1$
return $B$
$\operatorname{Merge}(L, R)$
create array B of length length $[L]+$ length $[R]$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow 1$ to length $[B]$
if $j>$ length $[R]$ or $(i \leq$ length $[L]$ and $L[i] \leq R[j])$ $B[k] \leftarrow L[i]$
$i \leftarrow i+1$
else
$B[k] \leftarrow R[j]$
$j \leftarrow j+1$
return B


## Merge

- Running time?


## Merge

- Running time? $\Theta(\mathrm{n})$ - linear

[^0]
[^0]:    $\operatorname{Merge}(L, R)$
    1 create array B of length length $[L]+$ length $[R]$
    $i \leftarrow 1$
    $j \leftarrow 1$
    4 for $k \leftarrow 1$ to length $[B]$
    if $j>$ length $[R]$ or $(i \leq$ length $[L]$ and $L[i] \leq R[j])$
    $B[k] \leftarrow L[i]$
    else
    $B[k] \leftarrow R[j$
    return B

    | 6 |  | $B[k] \leftarrow L[i]$ |
    | :--- | :--- | :--- |
    | 7 |  | $i \leftarrow i+1$ |
    | 8 | else |  |
    | 9 |  | $B[k] \leftarrow R[j]$ |
    | 10 |  | $j \leftarrow j+1$ |
    | 11 | return B |  |

