

Asymptotic notation

- How do you answer the question: "what is the running time of algorithm *x*?"
- We need a way to talk about the computational cost of an algorithm that focuses on the essential parts and ignores irrelevant details
- We' ve seen some of this already:
 - linear
 - *n* log *n*
 - n²

Asymptotic notation

- Precisely calculating the actual steps is tedious and not generally useful
- Different operations take different amounts of time. Even from run to run, things such as caching, etc. cause variations
- Want to identify **categories** of algorithmic runtimes

Runti	me e	xam	ples			
	n	$n \log n$	n^2	n^3	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 18 min	10^{25} years
n = 100	< 1 sec	< 1 sec	1 sec	1s	10^{17} years	very long
n = 1000	< 1 sec	< 1 sec	1 sec	$18 \min$	very long	very long
n = 10,000	< 1 sec	< 1 sec	$2 \min$	12 days	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long
(adapted from [2], Table 2.	1, pg. 34)				

worst-case vs. best-case vs. average-case

- worst-case: what is the worst the running time of the algorithm can be?
- best-case: what is the best the running time of the algorithm can be?
- average-case: given random data, what is the running time of the algorithm?
- **Don't** confuse this with O, Ω and Θ . The cases above are *situations*, asymptotic notation is about bounding particular situations

Proving bounds: find constants that satisfy inequalities

- Show that $5n^2 15n + 100$ is $\Theta(n^2)$
- Step 1: Prove O(n²) Find constants c and n₀ such that 5n² – 15n + 100 ≤ cn² for all n > n₀

$$cn^2 \geq 5n^2 - 15n + 100$$

$$c \geq 5 - 15/n + 100/n^2$$

Let $n_0 = 1$ and c = 5 + 100 = 105. 100/n² only get smaller as *n* increases and we ignore -15/*n* since it only varies between -15 and 0

Some rules of thumb

- Multiplicative constants can be omitted
 - $14n^2$ becomes n^2
 - 7 log *n* become log *n*
- Lower order functions can be omitted
 - n + 5 becomes n
 - n² + n becomes n²
- n^a dominates n^b if a > b
 - n² dominates n, so n²+n becomes n²
 - n^{1.5} dominates n^{1.4}

- 3ⁿ dominates n⁵
- 2ⁿ dominates n^c
- Any polynomial dominates any logorithm
 - *n* dominates log *n* or log log *n*
 - n² dominates n log n
 - n^{1/2} dominates log n
- Do **not** omit lower order terms of different variables (*n*² + *m*) does not become *n*²

Some examples

- O(*n*) linear. Do a constant amount of work on each element of the input
 - find an item in a linked list
 - determine the largest element in an array
- O(*n* log *n*) log-linear. Divide and conquer algorithms with a linear amount of work to recombine
 - Sort a list of number with MergeSort
 - FFT

Some examples

- O(*n*²) quadratic. Double nested loops that iterate over the data
 - Insertion sort
- O(2ⁿ) exponential
 - Enumerate all possible subsets
 - Traveling salesman using dynamic programming
- O(n!)
 - Enumerate all permutations
 - determinant of a matrix with expansion by minors

• **Combine**: Given the results of the solved subproblems, combine them to generate a solution for the complete problem

Divide and Conquer: some thoughts

- Often, the sub-problem is the same as the original problem
- Dividing the problem in half frequently does the job
- May have to get creative about how the data is split
- Splitting tends to generate run times with log *n* in them

Divide and Conquer: Sorting

- How should we split the data?
- What are the subproblems we need to solve?

• How do we combine the results from these subproblems?

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Merç	jeSort	
1 if $length[A] == 1$ 2 return A 3 else 4 $q \leftarrow \lfloor length[A]/2 \rfloor$ 5 create arrays $L[1q]$ and $R[q + 1 length[A]]$ 6 copy $A[1q]$ to L 7 copy $A[q + 1 length[A]]$ to R 8 $LS \leftarrow MERGE-SORT(L)$ 9 $RS \leftarrow MERGE-SORT(R)$	ME	$\operatorname{erge-Sort}(A)$	
2 return A 3 else 4 $q \leftarrow \lfloor length[A]/2 \rfloor$ 5 create arrays $L[1.q]$ and $R[q + 1 length[A]]$ 6 copy $A[1.q]$ to L 7 copy $A[q + 1 length[A]]$ to R 8 $LS \leftarrow MERGE-SORT(L)$ 9 $RS \leftarrow MERGE-SORT(R)$	1	if $length[A] == 1$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2	return A	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3	else	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4	$q \leftarrow \lfloor length[A] / 2 \rfloor$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5	create arrays $L[1q]$ and $R[q + 1 length[A]]$	
7 $\operatorname{copy} A[q+1 \operatorname{length}[A]]$ to R 8 $LS \leftarrow \operatorname{Merge-Sort}(L)$ 9 $RS \leftarrow \operatorname{Merge-Sort}(R)$	6	copy $A[1q]$ to L	
8 $LS \leftarrow \text{Merge-Sort}(L)$ 9 $RS \leftarrow \text{Merge-Sort}(R)$	7	copy $A[q + 1 length[A]]$ to R	
9 $RS \leftarrow MERGE-SORT(R)$	8	$LS \leftarrow \text{Merge-Sort}(L)$	
	9	$RS \leftarrow \text{Merge-Sort}(R)$	
10 return MERGE(LS, RS)	10	return Merge(LS, RS)	

Mer	ge	
 Is it 	correct?	
• L 2 6	.cop invariant: At the beginning of the for loop of lines I-10 the first k-1 elements of B are the smallest k-1 elements from L and R in sorted order.	
Me	$\operatorname{RGE}(L,R)$	
1	create array B of length $length[L] + length[R]$	
2	$i \leftarrow 1$	
3	$j \leftarrow 1$	
4	for $k \leftarrow 1$ to $length[B]$	
5	if $j > length[R]$ or $(i \leq length[L]$ and $L[i] \leq R[j])$	
6	$B[k] \leftarrow L[i]$	
7	$i \leftarrow i+1$	
8	else	
9	$B[k] \leftarrow R[j]$	
10	$j \leftarrow j+1$	
11	return B	

