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Big O 

David Kauchak  
cs302 

Spring 2012 

Administrative 
l  Assignment 1: how’d it go? 
l  Assignment 2: out soon… 
l  Lab code 

Asymptotic notation 
l  How do you answer the question: “what is the 

running time of algorithm x?” 
l  We need a way to talk about the computational cost 

of an algorithm that focuses on the essential parts 
and ignores irrelevant details 

l  We’ve seen some of this already: 
l  linear 
l  n log n 
l  n2 

Asymptotic notation 
l  Precisely calculating the actual steps is tedious 

and not generally useful 

l  Different operations take different amounts of 
time.  Even from run to run, things such as 
caching, etc. cause variations 

l  Want to identify categories of algorithmic 
runtimes 
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For example… 

l  f1(n) takes n2 steps 
l  f2(n) takes 2n + 100 steps 
l  f3(n) takes 3n+1 steps 

l  Which algorithm is better? 
l  Is the difference between f2 and f3 important/

significant?   

Runtime examples 

Big O: Upper bound 

l  O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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Big O: Upper bound 

l  O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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We can bound the function f(n) 
above by some constant factor 
of g(n) 
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Big O: Upper bound 

l  O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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We can bound the function f(n) 
above by some constant 
multiplied by g(n) 

For some increasing 
range 

Big O: Upper bound 

l  O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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Big O: Upper bound 

l  O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0

#
$
%

&%

'
(
%

)%

Generally, we’re most interested in 
big O notation since it is an upper 
bound on the running time 

Omega: Lower bound 

l  Ω(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 " cg(n) " f (n) for all n # n0
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Omega: Lower bound 

l  Ω(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 " cg(n) " f (n) for all n # n0
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We can bound the function f(n) 
below by some constant factor 
of g(n) 

Omega: Lower bound 

l  Ω(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 " cg(n) " f (n) for all n # n0
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Theta: Upper and lower bound 

l  Θ(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0
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Theta: Upper and lower bound 

l  Θ(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0
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We can bound the function f(n) 
above and below by some 
constant factor of g(n) (though 
different constants) 
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Theta: Upper and lower bound 

l  Θ(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0
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Note:  A function is theta bounded iff it is big O 
bounded and Omega bounded 

Theta: Upper and lower bound 

l  Θ(g(n)) is the set of functions: 

!(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 " c1g(n) " f (n) " c2g(n) for all n # n0
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Visually 

f(n) 

Visually: upper bound 

n0 

f(n) 
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Visually: lower bound 

n0 

f(n) 

worst-case vs. best-case vs. 
average-case 

l  worst-case: what is the worst the running time of the 
algorithm can be? 

l  best-case: what is the best the running time of the 
algorithm can be? 

l  average-case: given random data, what is the 
running time of the algorithm? 

l  Don’t confuse this with O, Ω and Θ.  The cases 
above are situations, asymptotic notation is about 
bounding particular situations 

Proving bounds: find constants 
that satisfy inequalities 

l  Show that 5n2 – 15n + 100 is Θ(n2) 
l  Step 1: Prove O(n2) – Find constants c and n0 

such that 5n2 – 15n + 100 ≤ cn2 for all n > n0 

100155 22 +−≥ nncn
2/100/155 nnc +−≥

Let n0 =1 and c = 5 + 100 = 105. 
100/n2 only get smaller as n increases and we 
ignore -15/n since it only varies between -15 and 0 

Proving bounds 

l  Step 2: Prove Ω(n2) – Find constants c and n0 
such that 5n2 – 15n + 100 ≥ cn2 for all n > n0 

100155 22 +−≤ nncn
2/100/155 nnc +−≤

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less 
than 1.25).  We can ignore 100/n2 since it is always 
positive and 15/n is always decreasing. 



2/16/12 

7 

Bounds 
Is 5n2  O(n)? No 

How would we prove it? 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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Disproving bounds 

Is 5n2  O(n)?

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ! f (n) ! cg(n) for all n " n0
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Assume it’s true.  That means there exists some c and n0 such that 

5n2 ! cn for n > n0

5n ! c contradiction! 

Some rules of thumb 
l  Multiplicative constants can be omitted 

l  14n2 becomes n2 

l  7 log n become log n 
l  Lower order functions can be omitted 

l  n + 5 becomes n 
l  n2 + n becomes n2 

l  na dominates nb if a > b  
l  n2 dominates n, so n2+n becomes n2 

l  n1.5 dominates n1.4 
 

Some rules of thumb 
l  an dominates bn if a > b 

l  3n dominates 2n 

l  Any exponential dominates any polynomial 
l  3n dominates n5 

l  2n dominates nc 

l  Any polynomial dominates any logorithm 
l  n dominates log n or log log n 
l  n2 dominates n log n 
l  n1/2 dominates log n 

l  Do not omit lower order terms of different variables 
(n2 + m) does not become n2 
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Big O 

l  n2 + n log n + 50 

l  2n -15n2 + n3 log n 

l  nlog n + n2 + 15n3 

l  n5 - n! + nn 

Some examples 

l  O(1) – constant.  Fixed amount of work, 
regardless of the input size 
l  add two 32 bit numbers 
l  determine if a number is even or odd 
l  sum the first 20 elements of an array 
l  delete an element from a doubly linked list 

l  O(log n) – logarithmic.  At each iteration, 
discards some portion of the input (i.e. half) 
l  binary search 

Some examples 

l  O(n) – linear. Do a constant amount of work 
on each element of the input 
l  find an item in a linked list 
l  determine the largest element in an array 

l  O(n log n) log-linear.  Divide and conquer 
algorithms with a linear amount of work to 
recombine 
l  Sort a list of number with MergeSort 
l  FFT 

Some examples 
l  O(n2) – quadratic. Double nested loops that 

iterate over the data 
l  Insertion sort 

l  O(2n) – exponential 
l  Enumerate all possible subsets 
l  Traveling salesman using dynamic programming 

l  O(n!) 
l  Enumerate all permutations 
l  determinant of a matrix with expansion by minors 
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Divide and Conquer 
l  Divide:  Break the problem into smaller 

subproblems 
l  Conquer: Solve the subproblems.  Generally, 

this involves waiting for the problem to be small 
enough that it is trivial to solve (i.e. 1 or 2 items) 

l  Combine: Given the results of the solved 
subproblems, combine them to generate a 
solution for the complete problem 

Divide and Conquer: some 
thoughts 
l  Often, the sub-problem is the same as the original 

problem 

l  Dividing the problem in half frequently does the job 

l  May have to get creative about how the data is split 

l  Splitting tends to generate run times with log n in them 

Divide and Conquer: Sorting 

l  How should we split the data? 
l  What are the subproblems we need to solve? 

l  How do we combine the results from these 
subproblems? 

MergeSort 
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MergeSort: Merge 
l  Assuming L and R are sorted already, merge  

the two to create a single sorted array 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4  

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5  

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 
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Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 

Merge 
R: 2  4  6  7 L: 1  3  5  8 

B: 1 2 3 4 5 6 7 8 
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Merge 
l  Does the algorithm terminate? 

Merge 

l  Is it correct? 
l  Loop invariant: At the end of each iteration of the for loop 

of lines 4-10 the subarray B[1..k] contains the smallest k 
elements from L and R in sorted order. 

Merge 

l  Is it correct? 
l  Loop invariant: At the beginning of the for loop of lines 

4-10 the first k-1 elements of B are the smallest k-1 
elements from L and R in sorted order. 

Merge 

l  Running time? 
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Merge 

l  Running time? Θ(n) - linear  


