

Can we ever go wrong applying this update rule?

• We can apply this rule as many times as we want and will never underestimate dist[v]

When will dist[v] be right?

 If u is along the shortest path to v and dist[u] is correct

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What happens if we update all of the vertices with the above update?

- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

Loop invariant:

BE	LLMAN-FORD (G, s)
1	for all $v \in V$
2	$dist[v] \leftarrow \infty$
3	$prev[v] \leftarrow null$
4	$dist[s] \leftarrow 0$
5	for $i \leftarrow 1$ to $ V - 1$
6	for all edges $(u, v) \in E$
7	if $dist[v] > dist[u] + w(u, v)$
8	$dist[v] \leftarrow dist[u] + w(u, v)$
9	$prev[v] \leftarrow u$
10	for all edges $(u, v) \in E$
11	if $dist[v] > dist[u] + w(u, v)$
12	return false

- Input: An undirected, positive weight graph, G=(V,E)
- Output: A tree T=(V,E') where $E' \subseteq E$ that minimizes

weight(T) =
$$\sum_{e \in E'} w_e$$

Applications?

- Connectivity
- Networks (e.g. communications)
- Circuit design/wiring
- hub/spoke models (e.g. flights, transportation)
- Traveling salesman problem?

Running time of Kruskal's								
O(E log E) +								
	MakeSet	FindSet E calls	Union V calls	Total				
Linked lists	ĮΥĮ	O(V E)	IM	0(V E + I 0(V E)	E log E)			
Linked lists + heuristics	 V 	O(E log V)	IVI (D(E log V + E O(E log E				

Running time of Prim's								
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total				
Array	O(V)	O(V ²)	O(E)	O(V ²)				
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)				
Fib heap	O(V)	O(V log V)	O(E) Kruskal	O(V log V + E) s: O(E log E)				