

Bounding the distance

- Another invariant: For each vertex v, dist[v] is an upper bound on the actual shortest distance
- start off at ∞
- only update the value if we find a shorter distance
- An update procedure

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- Consider the shortest path from s to v

When will dist[v] be right?

- If u is along the shortest path to v and dist[u] is correct

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What happens if we update all of the vertices with the above update?

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[\nu], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[v] will be right if u is along the shortest path to v and dist[u$]$ is correct
- Does the order that we update the vertices matter?

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[$[\mathrm{v}]$ will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_{i} to have the correct shortest path from s? - i times

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_{i} to have the correct shortest path from s?
- i times

-

$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

- dist[$[\mathrm{v}]$ will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_{i} to have the correct shortest path from s?
- itimes

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[$[\mathrm{v}]$ will be right if u is along the shortest path to v and dist[$u]$ is correct
- How many times do we have to do this for vertex p_{i} to have the correct shortest path from s?
- i times

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What is the longest (vetex-wise) the path from s to any node v can be?
- $|\mathrm{V}|-1$ edges/vertices

Bellman-Ford algorithm

```
Bellman-Ford(G,s)
    1 for all v\inV
        dist [v]}\leftarrow
        \ist[s]}\operatorname{prev}[v]\leftarrow\mathrm{ null
    dist[s]}
    for }i\leftarrow1\mathrm{ to }|V|-
        for all edges (u,v) \inE
            if dist [v]>\operatorname{dist}[u]+w(u,v)
                dist [v]}\leftarrow\operatorname{dist}[u]+w(u,v
                prev[v]}\leftarrow
for all edges (u,v) \inE
        if dist[v]> dist [u]+w(u,v)
            return false
```


Bellman-Ford algorithm

Correctness of Bellman-Ford

Loop invariant:

```
Bellman-Ford( }G,s
    1 for all v\inV
        dist[v]}\leftarrow
    dist [s]}\leftarrow
f for }i\leftarrow1\mathrm{ to }|V|-
        for all edges (u,v) \inE
            if dist[v]> dist[u]+w(u,v)
                dist [v]\leftarrow\operatorname{dist}[u]+w(u,v)
                prev[v]\leftarrowu
for all edges (u,v)\inE
    if dist[v]> dist [u]+w(u,v)
    return false
```


Correctness of Bellman-Ford

Loop invariant: After iteration i, all vertices with shortest paths from s of length i edges or less have correct distances

```
Bellman-Ford( }G,s
    1 for all v\inV
    dist[v]}\leftarrow
        prev[v]}\leftarrow\mathrm{ null
    dist[s]\leftarrow0
    for }i\leftarrow1\mathrm{ to }|V|-
        for all edges (u,v) \inE
            if dist[v]>\operatorname{dist}[u]+w(u,v)
                    dist [v]\leftarrow\operatorname{dist}[u]+w(u,v)
                prev[v]}\leftarrow
    for all edges (u,v) \inE
        If dist[v]> dist[u]+w(u,v)
    return false
```


Runtime of Bellman-Ford

$\operatorname{Bellman}-\operatorname{Ford}(G, s)$
1 for all $v \in V$

$$
\begin{aligned}
\operatorname{dist}[v] & \leftarrow \infty \\
\text { prev }[v] & \leftarrow \text { null } \\
\text { dist }[s] & \leftarrow 0
\end{aligned}
$$

dist $[s] \leftarrow 0$
for $i \leftarrow 1$ to $|V|-1$
for all edges $(u, v) \in E$
if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)$
$\operatorname{prev}[v] \leftarrow u$
for all edges $(u, v) \in E$
if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
return false
$\mathrm{O}(|\mathrm{V}| \mathrm{\mid E} \mid)$

Runtime of Bellman-Ford

```
Bellman-Ford(G,s)
    for all v\inV
    dist[v]}\leftarrow
    prev[v]}\leftarrow\mathrm{ null
dist[s]}\leftarrow
for }i\leftarrow1\mathrm{ to }|V|-
            for all edges (u,v) \inE
                if dist[v]>\operatorname{dist}[u]+w(u,v)
                    dist[v]}\leftarrow\operatorname{dist}[u]+w(u,v
                prev[v]}\leftarrow
    for all edges }(u,v)\in
            if dist [v]>\operatorname{dist}[u]+w(u,v)
                return false
```

Can you modify the algorithm to run faster (in some circumstances)?

All pairs shortest paths

- Simple approach
- Call Bellman-Ford |V| times
- $\mathrm{O}\left(|\mathrm{V}|^{2}|E|\right)$
- Floyd-Warshall - $\Theta\left(|\mathrm{V}|^{3}\right)$
- Johnson' s algorithm - $\mathrm{O}\left(|\mathrm{V}|^{2} \log |\mathrm{~V}|+|\mathrm{V}||\mathrm{E}|\right)$

Minimum spanning trees - What is the lowest weight set of edges that connects all vertices of an undirected graph with positive weights
- What is the lowest weight set of edges that connects all vertices of an undirected graph with positive weights - Input: An undirected, positive weight graph, $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ - Output: A tree $T=\left(V, E^{\prime}\right)$ where $E^{\prime} \subseteq E$ that minimizes $w e i g h t(T)=\sum_{e \in E^{\prime}} w_{e}$

Applications?

- Connectivity
- Networks (e.g. communications)
- Circuit design/wiring
- hub/spoke models (e.g. flights, transportation)
- Traveling salesman problem?

Minimum cut property

Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Prove this!

Minimum cut property

Minimum cut property

Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Using e instead of e', still connects the graph, but produces a tree with smaller weights

Kruskal's algorithm

Kruskal's algorithm Add smallest edge that connects two sets not already connected	\%:\%
 MST G	(E)
(B) (D)	(F)

Correctness of Kruskal's

- Never adds an edge that connects already connected vertices
- Always adds lowest cost edge to connect two sets. By min cut property, that edge must be part of the MST

[^0]| Running time of Kruskal's | $\because: \%$ $\because: \%$ $\because \because:$ $\because: \%$ |
| :---: | :---: |
| ```Kruskal(G) for all \(v \in V\) \(\operatorname{MakeSet}(v)\) \(T \leftarrow\}\) sort the edges of \(E\) by weight for all edges \((u, v) \in E\) in increasing order of weight if \(\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)\) add edge to \(T\) Union(Find-Set(u),Find-Set(\((v)\))``` | |

Running time of Kruskal	S $\left\lvert\, \begin{aligned} & \text { S } \\ & \text { S }\end{aligned}\right.$	
Kruskal (G)		
$\begin{array}{\|ll\|} \hline 1 & \text { for all } v \in V \\ 2 & \operatorname{MAKESET}(v) \end{array}$	\|V	calls to MakeSet
3 T ¢ $\{$ \}	O(\|E	$\log \mid$ E\|)
4 sort the edges of E by weight		
$\frac{5}{6}$ for all edges $(u, v) \in E$ in increasing order of weight	2 \|E	calls to FindSet
6 if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$		
7 8 addedge tio T -	\|V	calls to Union

Running time of Kruskal's										
Disjoint set data structure O(\|E	$\log \|E\|)+$									
	MakeSet	FindSet \|E	calls	Union \|V	calls	Total				
Linked lists	\|V		O(IV\|	E)	\|V		$\mathrm{O}(\|\mathrm{V}\| \mathrm{E}\|+\|\mathrm{E}\| \log \| \mathrm{E} \mid)$ O(IV\|	E)
Linked lists + heuristics	\|V		$\mathrm{O}(\|\underline{\mathrm{E}}\| \log \|\mathrm{V}\|)$	\|V		$\mathrm{O}(\mathrm{E}\|\log \| \mathrm{V}\|+\|\mathrm{E}\| \log \| \mathrm{E} \mid)$ O(\|E	$\log \|E\|)$			

Prim's algorithm

Prim's algorithm

$\operatorname{Prim}(G, r)$
$\operatorname{Prim}(G, r)$
1 for all $v \in V$
1 for all $v \in V$
$2 \operatorname{key}[v] \leftarrow \infty$
$2 \operatorname{key}[v] \leftarrow \infty$
prev $[v] \leftarrow$ null
prev $[v] \leftarrow$ null
$4 k e y[r] \leftarrow 0$
$4 k e y[r] \leftarrow 0$
$H \leftarrow \operatorname{MakeHeap}(k e y)$
$H \leftarrow \operatorname{MakeHeap}(k e y)$
6 while !Empty (H)
6 while !Empty (H)

7	$u \leftarrow \operatorname{Extract-Min}(H)$
8	

7	$u \leftarrow \operatorname{Extract-Min}(H)$
8	

 visited \([u] \leftarrow\) true
 for each edge $(u, v) \in E$
visited $[u] \leftarrow$ true
for each edge $(u, v) \in E$
if !visited $[v]$ and $w(u, v)<k e y(v)$
if !visited $[v]$ and $w(u, v)<k e y(v)$
Decrease-Key $(v, w(u, v))$
Decrease-Key $(v, w(u, v))$
prev $[v] \leftarrow u$
prev $[v] \leftarrow u$

Correctness of Prim's?

- Can we use the min-cut property?
- Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.
- Let S be the set of vertices visited so far
- The only time we add a new edge is if it's the lowest weight edge from S to V -S

Running time of Prim's	$\begin{aligned} & \because: \\ & \because: \\ & \because: \\ & \because: \end{aligned}$
$\operatorname{Prim}(G, r)$	
1 for all $v \in V$	
$3 \quad$ prev $[v] \leftarrow$ null	
4 key $[r] \leftarrow 0$	
$5 \mathrm{H} \leftarrow \mathrm{MakeHeap}($ (key $)$	
6 while ! Empty (H)	
$7 \quad u \leftarrow$ Extract-Min (H)	
8 visited $[u] \leftarrow$ true	
$9 \quad$ for each edge $(u, v) \in E$	
$10 \quad$ if !visited $[v]$ and $w(u, v)<k e y(v)$	
11 Decrease-Key $(v, w(u, v))$	
$12 \mathrm{prev}[\mathrm{v}] \leftarrow u$	

Running time of Prim"	$\|$$\because \because:$ $\because \because:$ $\because \because:$ \because	
$\operatorname{Prim}(G, r)$	$\Theta(\|\mathrm{V}\|)$	
1 for all $v \in V$ 2 key $[v] \leftarrow \infty$ 3 prev $[v] \leftarrow$ null 4 kev $[r] \leftarrow 0$ 5		
$5 \mathrm{H} \leftarrow \mathrm{MakeHeap}($ key $)$	$\Theta(\|\mathrm{V}\|)$	
6 while !Empty (H)	\|V	calls to Extract-Min
7 $u \leftarrow$ Extract-Min (H) 8		
8 visited $[u] \leftarrow$ true	\|E	calls to Decrease-Key
9 for each edge $(u, v) \in E$ 10 if !visited $[v]$ and $w(u, v)<k e y(v)$		
11 Decrease-Key $(v, w(u, v)$)		
$12 \mathrm{prev}[v] \leftarrow u$		

[^0]: Kruskal(G)
 for all $v \in V$
 Makeset (v)
 $T \leftarrow\}$
 sort the edges of E by weight
 for all edges $(u, v) \in E$ in increasing order of weight if $\operatorname{Find}-\operatorname{SET}(u) \neq \operatorname{Find}-\operatorname{SET}(v)$ add edge to T Union(Find-SEt (u), Find-Set (v))

