
4/17/12

1

Graphs

David Kauchak
cs302

Spring 2012

DAGs

Can represent dependency graphs

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort
l  A linear ordering of all the vertices such that for all

edges (u,v) ∈ E, u appears before v in the ordering
l  An ordering of the nodes that “obeys” the

dependencies, i.e. an activity can’t happen until it’s
dependent activities have happened

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

underwear

pants

belt

watch

shirt

tie

socks

shoes

jacket

Topological sort

4/17/12

2

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

4/17/12

3

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

…

4/17/12

4

Running time? Running time?

O(|V|+|E|)

Running time?

O(E) overall

Running time?

How many calls? |V|

4/17/12

5

Running time?

Overall running time?

O(|V|2+|V| |E|)

Can we do better?

Topological sort 2 Topological sort 2

4/17/12

6

Topological sort 2 Topological sort 2

Running time?
l  How many times do we process each node?
l  How many times do we process each edge?
l  O(|V| + |E|)

Connectedness

Given an undirected graph, for every node u ∈
V, can we reach all other nodes in the graph?

Run BFS or DFS-Visit (one pass) and mark
nodes as we visit them. If we visit all nodes,
return true, otherwise false.

Running time: O(|V| + |E|)

4/17/12

7

Strongly connected

Given a directed graph, can we reach any node
v from any other node u?

Ideas?

Transpose of a graph
l  Given a graph G, we can calculate the

transpose of a graph GR by reversing the
direction of all the edges

A

B

C

E
D

A

B

C

E
D

G GR

Running time to calculate GR? O(|V| + |E|)

Strongly connected Is it correct?
l  What do we know after the first pass?

l  Starting at u, we can reach every node
l  What do we know after the second pass?

l  All nodes can reach u. Why?
l  We can get from u to every node in GR, therefore, if we

reverse the edges (i.e. G), then we have a path from every
node to u

l  Which means that any node can reach any other
node. Given any two nodes s and t we can create a
path through u

s u t … …

4/17/12

8

Runtime?

O(|V| + |E|)

O(|V| + |E|)

O(|V| + |E|)

O(|V| + |E|)

O(|V|)

O(|V|)

Detecting cycles

l  Undirected graph
l  BFS or DFS. If we reach a node we’ve seen

already, then we’ve found a cycle
l  Directed graph

A

B
D

have to be careful

Detecting cycles

l  Undirected graph
l  BFS or DFS. If we reach a node we’ve seen

already, then we’ve found a cycle
l  Directed graph

l  Call TopologicalSort
l  If the length of the list returned ≠ |V| then a cycle

exists

Shortest paths

l  What is the shortest path from a to d?

A

B

C E

D

4/17/12

9

Shortest paths

l  BFS

A

B

C E

D

Shortest paths

l  What is the shortest path from a to d?

A

B

C E

D

1

1

3

2

2
3

4

Shortest paths

l  We can still use BFS

A

B

C E

D

1

1

3

2

2
3

4

Shortest paths

l  We can still use BFS

A

B

C E

D

1

1

3

2

2
3

4

A

B

C E

D

4/17/12

10

Shortest paths

l  We can still use BFS

A

B

C E

D

Shortest paths

l  What is the problem?

A

B

C E

D

Shortest paths
l  Running time is dependent on the weights

A

B

C 4

1

2

A

B

C 200

50

100

Shortest paths

A

B

C 200

50

100

A

B

C

4/17/12

11

Shortest paths

A

B

C

Shortest paths

A

B

C

Shortest paths

A

B

C

Nothing will change as we expand the
frontier until we’ve gone out 100 levels

Dijkstra’s algorithm

4/17/12

12

Dijkstra’s algorithm Dijkstra’s algorithm
prev keeps track of
the shortest path

Dijkstra’s algorithm Dijkstra’s algorithm

4/17/12

13

Dijkstra’s algorithm Single source shortest paths

l  All of the shortest path algorithms we’ll look
at today are call “single source shortest
paths” algorithms

l  Why?

A

B

C E

D

1

1

3

3

2
1

4

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

∞

4/17/12

14

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

A 0
B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

4/17/12

15

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

4/17/12

16

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

4/17/12

17

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

Frontier?

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

All nodes reachable
from starting node
within a given distance

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

E 3
D 5

4/17/12

18

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

D 5

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

A

B

C E

D

1

1
1

2 5

3
1

0

Heap

3

Is Dijkstra’s algorithm
correct?

Invariant:

4/17/12

19

Is Dijkstra’s algorithm
correct?

Invariant: For every vertex removed from the heap,
dist[v] is the actual shortest distance from s to v

proof?

Is Dijkstra’s algorithm
correct?
Invariant: For every vertex removed from the heap, dist
[v] is the actual shortest distance from s to v

l  The only time a vertex gets visited is when the
distance from s to that vertex is smaller than the
distance to any remaining vertex

l  Therefore, there cannot be any other path that hasn’t
been visited already that would result in a shorter path

Running time? Running time?

1 call to MakeHeap

4/17/12

20

Running time?

|V| iterations

Running time?

|V| calls

Running time?

O(|E|) calls

Running time?

l  Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

4/17/12

21

Running time?

l  Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

Is this an improvement? If |E| < |V|2 / log |V|

Running time?

l  Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

What about Dijkstra’s on…?

A

B

C E

D 1
1

-10

5
10

What about Dijkstra’s on…?

A

B

C E

D 1
1

-10

5
10

4/17/12

22

What about Dijkstra’s on…?

A

B

C E

D 1
1

5
10

Dijkstra’s algorithm only
works for positive edge
weights

