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DAGs 

Can represent dependency graphs 
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Topological sort 
l  A linear ordering of all the vertices such that for all 

edges (u,v) ∈ E, u appears before v in the ordering 
l  An ordering of the nodes that “obeys” the 

dependencies, i.e. an activity can’t happen until it’s 
dependent activities have happened 
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Topological sort 
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Topological sort 
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Topological sort 
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Running time? Running time? 

O(|V|+|E|) 

Running time? 

O(E) overall 

Running time? 

How many calls? |V| 
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Running time? 

Overall running time? 

O(|V|2+|V| |E|) 

Can we do better? 

Topological sort 2 Topological sort 2 
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Topological sort 2 Topological sort 2 

Running time? 
l  How many times do we process each node? 
l  How many times do we process each edge? 
l  O(|V| + |E|) 

Connectedness 

Given an undirected graph, for every node u ∈ 
V, can we reach all other nodes in the graph? 

Run BFS or DFS-Visit (one pass) and mark 
nodes as we visit them.  If we visit all nodes, 
return true, otherwise false. 

Running time:  O(|V| + |E|)  
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Strongly connected 

Given a directed graph, can we reach any node 
v from any other node u? 

Ideas? 

Transpose of a graph 
l  Given a graph G, we can calculate the 

transpose of a graph GR by reversing the 
direction of all the edges 

A 

B 

C 

E 
D 

A 

B 

C 

E 
D 

G GR 

Running time to calculate GR? O(|V| + |E|) 

Strongly connected Is it correct? 
l  What do we know after the first pass? 

l  Starting at u, we can reach every node 
l  What do we know after the second pass? 

l  All nodes can reach u.  Why? 
l  We can get from u to every node in GR, therefore, if we 

reverse the edges (i.e. G), then we have a path from every 
node to u 

l  Which means that any node can reach any other 
node.  Given any two nodes s and t we can create a 
path through u 

s u t … …
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Runtime? 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V|) 

O(|V|) 

Detecting cycles 

l  Undirected graph 
l  BFS or DFS.  If we reach a node we’ve seen 

already, then we’ve found a cycle 
l  Directed graph 
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B 
D 

have to be careful 

Detecting cycles 

l  Undirected graph 
l  BFS or DFS.  If we reach a node we’ve seen 

already, then we’ve found a cycle 
l  Directed graph 

l  Call TopologicalSort 
l  If the length of the list returned ≠ |V| then a cycle 

exists 

Shortest paths 

l  What is the shortest path from a to d? 
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Shortest paths 

l  BFS 
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Shortest paths 

l  What is the shortest path from a to d? 
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Shortest paths 

l  We can still use BFS 
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Shortest paths 

l  We can still use BFS 
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Shortest paths 

l  What is the problem? 

A 

B 

C E 

D 

Shortest paths 
l  Running time is dependent on the weights 
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Shortest paths 
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Shortest paths 
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Nothing will change as we expand the 
frontier until we’ve gone out 100 levels 

Dijkstra’s algorithm 
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Dijkstra’s algorithm Dijkstra’s algorithm 
prev keeps track of  
the shortest path 

Dijkstra’s algorithm Dijkstra’s algorithm 
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Dijkstra’s algorithm Single source shortest paths 

l  All of the shortest path algorithms we’ll look 
at today are call “single source shortest 
paths” algorithms 

l  Why? 
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Is Dijkstra’s algorithm 
correct? 

Invariant: 
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Is Dijkstra’s algorithm 
correct? 

Invariant: For every vertex removed from the heap, 
dist[v] is the actual shortest distance from s to v 

proof? 

Is Dijkstra’s algorithm 
correct? 
Invariant: For every vertex removed from the heap, dist
[v] is the actual shortest distance from s to v 
 

l  The only time a vertex gets visited is when the 
distance from s to that vertex is smaller than the 
distance to any remaining vertex 

l  Therefore, there cannot be any other path that hasn’t 
been visited already that would result in a shorter path 

Running time? Running time? 

1 call to MakeHeap 
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Running time? 

|V| iterations 

Running time? 

|V| calls 

Running time? 

O(|E|) calls 

Running time? 

l  Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

O(|E| log |V|) 
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Running time? 

l  Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

O(|E| log |V|) 

Is this an improvement? If |E| < |V|2 / log |V| 

Running time? 

l  Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|) 

O(|E| log |V|) 

What about Dijkstra’s on…? 
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What about Dijkstra’s on…? 
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Dijkstra’s algorithm only 
works for positive edge 
weights 


