
4/12/12

1

Graphs

David Kauchak
cs302

Spring 2012

Admin
l  HW 11 and 12

l  You can submit revised solutions to any problem you missed
l  Also submit your original homework
l  I’ll give you up to half of the points taken off
l  Because I’ve given comments/feedback, make sure you explain
why for simple questions (like run-time)

l  Also, I will expect your answers to be very clear and precise
l  HW 14

l  more dynamic programming
l  will involve some programming (you may use any language

installed on the lab machines)
l  may work with a partner: you and your partner must always be

there when you’re working on the assignment

Admin

l  Registration
l  Lunch today!

Graphs

l  A graph is a set of vertices V and a set of
edges (u,v) ∈ E where u,v ∈ V

A

B

C

E
D

F

G

4/12/12

2

Different types of graphs
l  Undirected – edges do not have a direction

A

B

C

E
D

F

G

Different types of graphs
l  Directed – edges do have a direction

A

B

C

E
D

F

G

Different types of graphs
l  Weighted – edges have an associated weight

A

B

C

E
D

F

G

8

2

7

20

1
7

2

Different types of graphs
l  Weighted – edges have an associated weight

A

B

C

E
D

F

G

8

2

7

20

1
7

2

4/12/12

3

Terminology
l  Path – A path is a list of vertices p1,p2,…pk

where there exists an edge (pi,pi+1) ∈ E

A

B

C

E
D

F

G

Terminology
l  Path – A path is a list of vertices p1,p2,…pk

where there exists an edge (pi,pi+1) ∈ E

A

B

C

E
D

F

G

{A, B, D, E, F}

Terminology
l  Path – A path is a list of vertices p1,p2,…pk

where there exists an edge (pi,pi+1) ∈ E

A

B

C

E
D

F

G

{C, D}

Terminology
l  Path – A path is a list of vertices p1,p2,…pk

where there exists an edge (pi,pi+1) ∈ E

A

B

C

E
D

F

G

A simple path contains
no repeated vertices
(often this is implied)

4/12/12

4

Terminology
l  Cycle – A subset of the edges that form a

path such that the first and last node are the
same

A

B

C

E
D

F

G

Terminology
l  Cycle – A subset of the edges that form a

path such that the first and last node are the
same

A

B

C

E
D

F

G

{A, B, D}

Terminology
l  Cycle – A subset of the edges that form a

path such that the first and last node are the
same

A

B

C

E
D

F

G

not a cycle

Terminology
l  Cycle – A subset of the edges that form a

path such that the first and last node are the
same

A

B

C

E
D

F

G

4/12/12

5

Terminology
l  Cycle – A subset of the edges that form a

path such that the first and last node are the
same

A

B

C

E
D

F

G

not a cycle

Terminology
l  Cycle – A path p1,p2,…pk where p1 = pk

A

B

C

E
D

F

G

cycle

Terminology
l  Connected – every pair of vertices is

connected by a path

A

B

C

E
D

F

G

connected

Terminology
l  Connected (undirected graphs) – every pair

of vertices is connected by a path

A

B

C

E
D

F

G

not connected

4/12/12

6

Terminology
l  Strongly connected (directed graphs) –

Every two vertices are reachable by a path

A

B

C

E
D

F

G

not strongly
connected

Terminology
l  Strongly connected (directed graphs) –

Every two vertices are reachable by a path

A

B

E
D

F

G

not strongly
connected

Terminology
l  Strongly connected (directed graphs) –

Every two vertices are reachable by a path

A

B

E
D

F

G

strongly
connected

Different types of graphs
l  Tree – connected, undirected graph without

any cycles

A

B

C

E
D

F

G

H

4/12/12

7

Different types of graphs
l  Tree – connected, undirected graph without

any cycles

A

B
C

E
D

F

G

H

need to specify root

Different types of graphs
l  Tree – connected, undirected graph without

any cycles

A

B

C

E
D

F

G

H

Different types of graphs
l  DAG – directed, acyclic graph

A

B

C

E
D

F

G

H

Different types of graphs
l  Complete graph – an edge exists between

every node

A

B

C

D

F

4/12/12

8

Different types of graphs
l  Bipartite graph – a graph where every vertex can be partitioned

into two sets X and Y such that all edges connect a vertex u ∈ X
and a vertex v ∈ Y

A

B

C

E

D

F

G

When do we see graphs in
real life problems?

l  Transportation networks (flights, roads, etc.)
l  Communication networks
l  Web
l  Social networks
l  Circuit design
l  Bayesian networks

Representing graphs Representing graphs
l  Adjacency list – Each vertex u ∈ V contains

an adjacency list of the set of vertices v such
that there exists an edge (u,v) ∈ E

A

B

C

E
D

A: B D

B: A D

C: D

D: A B C E

E: D

4/12/12

9

Representing graphs
l  Adjacency list – Each vertex u ∈ V contains

an adjacency list of the set of vertices v such
that there exists an edge (u,v) ∈ E

A

B

C

E
D

A: B

B:

C: D

D: A B

E: D

Representing graphs
l  Adjacency matrix – A |V|x|V| matrix A such that:

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

l  Adjacency matrix – A |V|x|V| matrix A such that:

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

l  Adjacency matrix – A |V|x|V| matrix A such that:

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

4/12/12

10

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

l  Adjacency matrix – A |V|x|V| matrix A such that:

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

Is it always
symmetric?

l  Adjacency matrix – A |V|x|V| matrix A such that:

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

Representing graphs

A B C D E
A 0 1 0 0 0
B 0 0 0 0 0
C 0 0 0 1 0
D 1 1 0 0 0
E 0 0 0 1 0

A

B

C

E
D

l  Adjacency matrix – A |V|x|V| matrix A such that:

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
aij

Adjacency list vs.
adjacency matrix

Adjacency list Adjacency matrix

l  Sparse graphs (e.g. web)
l  Space efficient
l  Must traverse the

adjacency list to discover is
an edge exists

l  Dense graphs
l  Constant time lookup to

discover if an edge exists
l  simple to implement
l  for non-weighted graphs,

only requires boolean
matrix

Can we get the best of both worlds?

4/12/12

11

Sparse adjacency matrix
l  Rather than using an adjacency list, use an

adjacency hashtable

A

B

C

E
D

A:

B:

C:

D:

E:

hashtable [B,D]

hashtable [A,D]

hashtable [D]

hashtable [A,B,C,E]

hashtable [D]

Sparse adjacency matrix
l  Constant time lookup
l  Space efficient
l  Not good for dense graphs

A

B

C

E
D

A:

B:

C:

D:

E:

hashtable [B,D]

hashtable [A,D]

hashtable [D]

hashtable [A,B,C,E]

hashtable [D]

Weighted graphs

l  Adjacency list
l  store the weight as an additional field in the list

A

B

C

E
D

8

2

3

13

10

A: B:8 D:3

Weighted graphs

l  Adjacency matrix

A

B

C

E
D

8

2

3

13

10

⎩
⎨
⎧ ∈

=
otherwise0

),(if Ejiweight
aij

A B C D E
A 0 8 0 3 0
B 8 0 0 2 0
C 0 0 0 10 0
D 3 2 10 0 13
E 0 0 0 13 0

4/12/12

12

Graph algorithms/questions
l  Graph traversal (BFS, DFS)
l  Shortest path from a to b

l  unweighted
l  weighted positive weights
l  negative/positive weights

l  Minimum spanning trees
l  Are all nodes in the graph connected?
l  Is the graph bipartite?
l  hw15 and hw16 J

Breadth First Search (BFS) on
Trees

Tree BFS

A

B

C

E D

F G

Q:

Tree BFS

A

B

C

E D

F G

Q: A

4/12/12

13

Tree BFS

A

B

C

E D

F G

Q:

Tree BFS

A

B

C

E D

F G

Q: B, D, E

Tree BFS

A

B

C

E D

F G

Q: D, E

Tree BFS

A

B

C

E D

F G

Q: D, E, C, F

4/12/12

14

Tree BFS

A

B

C

E D

F G

Q: E, C, F

Tree BFS

A

B

C

E D

F G

Q: E, C, F Frontier: the set of vertices
that have been visited so far

Tree BFS

A

B

C

E D

F G

Tree BFS

A

B

C

E D

F G

4/12/12

15

Tree BFS

A

B

C

E D

F G

Tree BFS

A

B

C

E D

F G

Tree BFS
l  What order does the algorithm traverse the

nodes?
l  BFS traversal visits the nodes in increasing

distance from the root

Tree BFS

l  Does it visit all of the nodes?

4/12/12

16

Running time of Tree BFS
l  Adjacency list

l  How many times does it visit each vertex?
l  How many times is each edge traversed?
l  O(|V|+|E|)

l  Adjacency matrix
l  For each vertex visited, how much work is done?
l  O(|V|2)

BFS Recursively

Hard to do!

BFS for graphs
l  What needs to change for graphs?
l  Need to make sure we don’t visit a node multiple

times

B

D E

F

A

C

G

distance variable keeps
track of how far from
the starting node and
whether we’ve seen the
node yet

B

D E

F

A

C

G

4/12/12

17

B

D E

F

A

C

G

set all nodes
as unseen

B

D E

F

A

C

G

check if the node
has been seen

B

D E

F

A

C

G

set the node as seen
and record distance

B

D E

F

A

C

G

4/12/12

18

B

D E

F

A

C

G

∞ ∞

∞

∞ ∞

∞ ∞

B

D E

F

A

C

G

0 ∞

∞

∞ ∞

∞ ∞

Q: A

B

D E

F

A

C

G

0 ∞

∞

∞ ∞

∞ ∞

Q:

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: D, E, B

4/12/12

19

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: E, B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q:

4/12/12

20

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q:

B

D E

F

A

C

G

0 1

2

2 ∞

1 1

Q: F, C

B

D E

F

A

C

G

0 1

2

2 3

1 1

B

D E

F

A

C

G

0 1

2

2 3

1 1

4/12/12

21

B

D E

F

A

C

G

0 1

2

2 3

1 1

Is BFS correct?
l  Does it visit all nodes reachable from the starting

node?
l  Can you prove it?
l  Assume we “miss” some node ‘u’, i.e. a path

exists, but we don’t visit ‘u’

S … U

Is BFS correct?
l  Does it visit all nodes reachable from the starting

node?
l  Can you prove it?
l  Find the last node along the path to ‘u’ that was

visited

S … U … Z W

why do we know that
such a node exists?

Is BFS correct?
l  Does it visit all nodes reachable from the starting

node?
l  Can you prove it?
l  We visited ‘z’ but not ‘w’, which is a contradiction,

given the pseudocode

S … U … Z W

contradiction

4/12/12

22

Is BFS correct?
l  Does it correctly label each node with the shortest

distance from the starting node?

l  Assume the algorithm labels a node with a longer
distance. Call that node ‘u’

S … U

Is BFS correct?
l  Does it correctly label each node with the shortest

distance from the starting node?

l  Find the last node in the path with the correct
distance

S … U … Z W

correct incorrect

Is BFS correct?
l  Does it correctly label each node with the shortest

distance from the starting node?

l  Find the last node in the path with the correct
distance

S … U … Z W

contradiction

Runtime of BFS
l  Nothing changed over our analysis of TreeBFS

4/12/12

23

Runtime of BFS

l  Adjacency list: O(|V| + |E|)
l  Adjacency matrix: O(|V|2)

Depth First Search (DFS)

Depth First Search (DFS) Depth First Search (DFS)

4/12/12

24

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

4/12/12

25

Tree DFS

A

B

C

E D

F G

Frontier?

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

4/12/12

26

Tree DFS

A

B

C

E D

F G

DFS on graphs

DFS on graphs

mark all nodes as
not visited

DFS on graphs

until all nodes have been
visited repeatedly call
DFS-Visit

4/12/12

27

DFS on graphs

What happened
to the stack?

What does DFS do?
l  Finds connected components

l  Each call to DFS-Visit from DFS starts exploring a new
set of connected components

l  Helps us understand the structure/connectedness of a
graph

Is DFS correct?

l  Does DFS visit all of the nodes in a graph?

Running time?

Like BFS
l  Visits each node exactly once
l  Processes each edge exactly twice (for an

undirected graph)
l  O(|V|+|E|)

4/12/12

28

DAGs

Can represent dependency graphs

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort
l  A linear ordering of all the vertices such that for all

edges (u,v) ∈ E, u appears before v in the ordering
l  An ordering of the nodes that “obeys” the

dependencies, i.e. an activity can’t happen until it’s
dependent activities have happened

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

underwear

pants

belt

watch

shirt

tie

socks

shoes

jacket

