

- HW 11 and 12
- You can submit revised solutions to any problem you missed
- Illl give you up to half of the points taken off
- Because I've given comments/feedback, make sure you explain
why for simple questions (like run-time)
- more dynamic expect your answers to be very clear and precise
- will involve some programming (you may use any language
installed on the lab machines)
may work with a partner: you and your partner must always be
there when you're working on the assignment

Admin - Registration - Lunch today!	

Terminology

- Path - A path is a list of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$
\{C, D\}

Terminology

- Path - A path is a list of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$

Terminology

- Cycle - A subset of the edges that form a path such that the first and last node are the same

Terminology

- Cycle - A subset of the edges that form a path such that the first and last node are the same

Terminology

- Connected (undirected graphs) - every pair of vertices is connected by a path

When do we see graphs in real life problems?

- Transportation networks (flights, roads, etc.)
- Communication networks
- Web
- Social networks
- Circuit design
- Bayesian networks

Representing graphs	

| |
| :--- | :--- | :--- | :--- |
| Representing graphs |
| - Adjacency list - Each vertex $u \in \mathrm{~V}$ contains |
| an adjacency list of the set of vertices v such |
| that there exists an edge $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$ |

Representing graphs

- Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$
ABCDE

A 01010
B 1000100
C 00010
D 111101
E 00010

Adjacency list vs. adjacency matrix

Adjacency list

- Sparse graphs (e.g. web)
- Space efficient
- Must traverse the adjacency list to discover is an edge exists

Adjacency matrix

- Dense graphs
- Constant time lookup to discover if an edge exists
- simple to implement
- for non-weighted graphs, only requires boolean matrix

Can we get the best of both worlds?

Graph algorithms／questions
 －Graph traversal（BFS，DFS）
 －Shortest path from a to b
 －unweighted
 －weighted positive weights
 －negative／positive weights
 －Minimum spanning trees
 －Are all nodes in the graph connected？
 －Is the graph bipartite？
 －hw15 and hw16 ：）

Breadth First Search（BFS）on Trees

TreeBFS (T)
Enqueue（ Q ，Root（ T ））
while ！ $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{DEQUEuE}(Q)$
$\operatorname{Visit}(v)$
for all $c \in \operatorname{Children}(v)$
$\operatorname{Enqueue}(Q, c)$

Tree BFS

```
TreeBFS(T)
    Enqueue(Q,Root(T))
    while !EmPTY(Q)
        v}\leftarrow\operatorname{Dequeue}(Q
        |ISIT (v)
        for all c\in Children(v)
            Enqueue(Q,c)
```


Tree BFS

```
TreeBFS(T)
Enqueue( \(Q, \operatorname{Root}(T))\)
2 while ! Empty \((Q)\) \(v \leftarrow \operatorname{DEQUEUE}(Q)\) VISIT \((v)\) for all \(c \in \operatorname{Children}(v)\) \(\operatorname{Enqueue}(Q, c)\)
```


Q: B, D, E

Tree BFS

TreebFS (T)	
1	Enqueue($Q, \operatorname{Root}(T)$)
2	while ! Empty (Q)
3	$v \leftarrow \operatorname{DEQuEuE}(Q)$
4	$\operatorname{VISIT}(v)$
5	for all $c \in \operatorname{Children}(v)$
6	Enqueue (Q, c)

Q: D, E, C, F

Tree BFS

TreeBFS(T)

$\operatorname{Enqueue}(Q, \operatorname{Root}(T))$
while ! Еmpty (Q)

Tree BFS

TreebFS(T)
Enqueue(Q, Root(T))
while !emp Dequeue (Q)
$\leftarrow \operatorname{Dequeve}(Q)$
Visit (v)
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

Tree BFS

- What order does the algorithm traverse the nodes?
- BFS traversal visits the nodes in increasing distance from the root
$\operatorname{TreebFS}(T)$
$1 \operatorname{Enqueue}(Q, \operatorname{Root}(T))$
2 while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeve}(Q)$
$\operatorname{Visit}(v)$
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

Tree BFS

- Does it visit all of the nodes?

TreebFS(T)

1 Enqueue(Q, Root (T))
while ! Емpty (Q)
$v \leftarrow \operatorname{Dequeue}(Q)$
$v \leftarrow \operatorname{Dequ}$
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

Running time of Tree BFS

- Adjacency list
- How many times does it visit each vertex?
- How many times is each edge traversed?
- $\mathrm{O}(|\mathrm{V}|+\mid$ ㅌ|)
- Adjacency matrix
- For each vertex visited, how much work is done?
- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

TreebFS(T)

1 Enqueue(Q, Root($T)$)
2 while! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeue}(Q)$
$\operatorname{Visit}(v)$
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

> Treebes (T) 1 1 2 Enqueue $(Q, \operatorname{Root}(T))$ 3 \quad while !Empty (Q)

$\operatorname{EnqUEUE}(Q, s)$
$\operatorname{EnqUEUE}(Q, s)$
$\begin{array}{lc}5 & \text { while ! } \operatorname{Empty}(Q) \\ 6 & u \leftarrow \operatorname{DEQUEUE}(Q)\end{array}$
$\begin{array}{lc}5 & \text { while ! } \operatorname{Empty}(Q) \\ 6 & u \leftarrow \operatorname{DEQUEUE}(Q)\end{array}$
$u \leftarrow \operatorname{DEQ}$
Visit(U)
$u \leftarrow \operatorname{DEQ}$
Visit(U)
for each edge $(u, v) \in E$
for each edge $(u, v) \in E$ if dist $[v]=\infty$ \qquad
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+$


```
BFS(G,s)
1 for each v\inV
3 dist[s]=0
    Enqueue(Q,s)
5}\mathrm{ while!Empty (Q)
```


Is BFS correct?

- Does it visit all nodes reachable from the starting node?
- Can you prove it?
- Find the last node along the path to 'u' that was visited

Is BFS correct?

- Does it visit all nodes reachable from the starting node?
- Can you prove it?
- We visited ' z ' but not ' w ', which is a contradiction, given the pseudocode

Is BFS correct?

- Does it correctly label each node with the shortest distance from the starting node?
- Assume the algorithm labels a node with a longer distance. Call that node ' u '

Is BFS correct?

- Does it correctly label each node with the shortest distance from the starting node?
- Find the last node in the path with the correct distance

Is BFS correct?

- Does it correctly label each node with the shortest distance from the starting node?
- Find the last node in the path with the correct distance

Runtime of BFS

- Nothing changed over our analysis of TreeBFS

Runtime of BFS

Depth First Search (DFS)

- Adjacency list: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Adjacency matrix: $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

```
BFS(G,s)
1 \text { for each v} \in V
2 rras
3 dist[s]=0
4 Enqueue( }Q,s
5 while !Empty (Q)
u\leftarrow\operatorname{Dequeve( }Q\mathrm{ )}
Visit(U)
for each edge (u,v) \inE
        if dist [v]=\infty
            Enqueue(Q,v)
            dist[v]}\leftarrow\operatorname{dist}[u]+
```

```
TreeDFS(T)
Push(S,Root(T))
while!Empty (S)
    v\leftarrow\operatorname{Pop}(S)
    Visit(v)
    for all c\inChildren(v)
Push(S,c)
```


DFS on graphs

$\because:$
 :

$\operatorname{DFS}(G)$
1 for all $v \in V$
2 visited $[u] \leftarrow$ false
mark all nodes as not visited
$\begin{array}{ll}3 & \text { for all } v \in V \\ 4 & \text { if }!\text { visited }[v]\end{array}$
5 DFS-Visit (v)
DFS-VISIT (u)
1 visited $[u] \leftarrow$ true
2 PreVisit(U)
3 for all edges $(u, v) \in E$
4 if !visited $[v]$
DFS-VISIT (v)
6 PostVisit(u)

DFS on graphs	
```\(\operatorname{DFS}(G)\) for all \(v \in V\) visited \([u] \leftarrow\) false for all \(v \in V\) if !visited[v] DFS-VISIT( \(v\) )```	What happened to the stack?


| What does DFS do? |
| :--- | :--- |
| - Finds connected components |
| - Each call to DFS-Visit from DFS starts exploring a new |
| set of connected components |
| - Helps us understand the structure/connectedness of a |
| graph |

## Is DFS correct?

- Does DFS visit all of the nodes in a graph?


## $\operatorname{DFS}(G)$

for all $v \in V$
visited $[u] \leftarrow$ fals
for all $v \in V$
if ! visited $[v]$
DFS-VISIT(v)


