Quarter	
Graphs	
David Kauchak cs302	
Spring 2012	
	••
	Graphs David Kauchak cs302 Spring 2012

G

 (\mathbf{H})

G

E

When do we see graphs in real life problems?

- Transportation networks (flights, roads, etc.)
- Communication networks
- Web
- Social networks
- Circuit design
- Bayesian networks

ENQUEUE(Q, c)

Tree BFS $\mathrm{TreeBFS}(T)$ 1 ENQUEUE(Q, ROOT(T))A 2 while !EMPTY(Q)3 $v \leftarrow \text{Dequeue}(Q)$ $V_{\text{ISIT}}(v)$ for all $c \in \text{CHILDREN}(v)$ 4 D 56 $\operatorname{Enqueue}(Q, c)$ Q:

Depth	First Search (DFS)	
T 1 2 3 4 5 6	$\begin{array}{l} \operatorname{ReeDFS}(T) \\ \operatorname{Push}(S,\operatorname{Root}(T)) \\ \textbf{while} & \operatorname{!Empty}(S) \\ & v \leftarrow \operatorname{Pop}(S) \\ & \operatorname{Visit}(v) \\ & \textbf{for all } c \in \operatorname{Children}(v) \\ & \operatorname{Push}(S,c) \end{array}$	

Depth First Search (DFS) TREEBFS(T)TREEDFS(T)1 Push(S, Root(T))2 while !Empty(S)1 ENQUEUE(Q, ROOT(T))2 while !Empty(Q)3 3 $v \leftarrow \text{Dequeue}(Q)$ VISIT(v)for all $c \in \text{CHILDREN}(v)$ 45 6 ENQUEUE(Q, c)

Depth First Search (DFS)		
TREEDFS(T)	TREEBFS(T)	
1 $PUSH(S, ROOT(T))$	1 $ENQUEUE(Q, ROOT(T))$	
2 while !Empty(S)	2 while $!Empty(Q)$	
3 $v \leftarrow Pop(S)$	3 $v \leftarrow \text{Dequeue}(Q)$	
4 $VISIT(v)$	4 Visit(v)	
5 for all $c \in \text{CHILDREN}(v)$	5 for all $c \in CHILDREN(v)$	
6 $PUSH(S, c)$	6 $ENQUEUE(Q, c)$	

