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Graphs 

David Kauchak 
cs302 

Spring 2012 

Admin 
l  HW 11 and 12 

l  You can submit revised solutions to any problem you missed 
l  Also submit your original homework 
l  I’ll give you up to half of the points taken off 
l  Because I’ve given comments/feedback, make sure you explain 
why for simple questions (like run-time) 

l  Also, I will expect your answers to be very clear and precise 
l  HW 14 

l  more dynamic programming 
l  will involve some programming (you may use any language 

installed on the lab machines) 
l  may work with a partner: you and your partner must always be 

there when you’re working on the assignment 

Admin 

l  Registration 
l  Lunch today! 

Graphs 

l  A graph is a set of vertices V and a set of 
edges (u,v) ∈ E where u,v ∈ V 
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Different types of graphs 
l  Undirected – edges do not have a direction 
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Different types of graphs 
l  Directed – edges do have a direction 
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Different types of graphs 
l  Weighted – edges have an associated weight 
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Different types of graphs 
l  Weighted – edges have an associated weight 
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Terminology 
l  Path – A path is a list of vertices p1,p2,…pk 

where there exists an edge (pi,pi+1) ∈ E 
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l  Path – A path is a list of vertices p1,p2,…pk 

where there exists an edge (pi,pi+1) ∈ E 
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Terminology 
l  Path – A path is a list of vertices p1,p2,…pk 

where there exists an edge (pi,pi+1) ∈ E 
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Terminology 
l  Path – A path is a list of vertices p1,p2,…pk 

where there exists an edge (pi,pi+1) ∈ E 
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A simple path contains 
no repeated vertices 
(often this is implied) 
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Terminology 
l  Cycle – A subset of the edges that form a 

path such that the first and last node are the 
same 
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Terminology 
l  Cycle – A subset of the edges that form a 

path such that the first and last node are the 
same 

A 

B 

C 

E 
D 

F 

G 

{A, B, D} 

Terminology 
l  Cycle – A subset of the edges that form a 
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Terminology 
l  Cycle – A subset of the edges that form a 

path such that the first and last node are the 
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Terminology 
l  Cycle – A subset of the edges that form a 

path such that the first and last node are the 
same 
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not a cycle 

Terminology 
l  Cycle – A path p1,p2,…pk where p1 = pk 
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Terminology 
l  Connected – every pair of vertices is 

connected by a path 
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Terminology 
l  Connected (undirected graphs) – every pair 

of vertices is connected by a path 
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Terminology 
l  Strongly connected (directed graphs) –  

Every two vertices are reachable by a path 
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Terminology 
l  Strongly connected (directed graphs) –  
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Terminology 
l  Strongly connected (directed graphs) –  

Every two vertices are reachable by a path 
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Different types of graphs 
l  Tree – connected, undirected graph without 

any cycles 
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Different types of graphs 
l  Tree – connected, undirected graph without 

any cycles 
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need to specify root 

Different types of graphs 
l  Tree – connected, undirected graph without 

any cycles 
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Different types of graphs 
l  DAG – directed, acyclic graph 
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Different types of graphs 
l  Complete graph – an edge exists between 

every node 
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Different types of graphs 
l  Bipartite graph – a graph where every vertex can be partitioned 

into two sets X and Y such that all edges connect a vertex u ∈ X 
and a vertex v ∈ Y 
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When do we see graphs in  
real life problems? 

l  Transportation networks (flights, roads, etc.) 
l  Communication networks 
l  Web 
l  Social networks 
l  Circuit design 
l  Bayesian networks 

Representing graphs Representing graphs 
l  Adjacency list – Each vertex u ∈ V contains 

an adjacency list of the set of vertices v such 
that there exists an edge (u,v) ∈ E 
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Representing graphs 
l  Adjacency list – Each vertex u ∈ V contains 

an adjacency list of the set of vertices v such 
that there exists an edge (u,v) ∈ E 
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Representing graphs 
l  Adjacency matrix – A |V|x|V| matrix A such that: 
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Representing graphs 
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Representing graphs 
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A  B  C  D  E 
A  0  1   0  1   0 
B  1  0   0  1   0 
C  0  0   0  1   0 
D  1  1   1  0   1 
E  0  0   0   1  0 

Is it always 
symmetric? 

l  Adjacency matrix – A |V|x|V| matrix A such that: 
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otherwise0
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Representing graphs 

A  B  C  D  E 
A  0  1   0  0   0 
B  0  0   0  0   0 
C  0  0   0  1   0 
D  1  1   0  0   0 
E  0  0   0   1  0 

A 

B 

C 

E 
D 

l  Adjacency matrix – A |V|x|V| matrix A such that: 
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=
otherwise0

),( if1 Eji
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Adjacency list vs. 
adjacency matrix 

Adjacency list Adjacency matrix 

l  Sparse graphs (e.g. web) 
l  Space efficient 
l  Must traverse the 

adjacency list to discover is 
an edge exists 

l  Dense graphs 
l  Constant time lookup to 

discover if an edge exists 
l  simple to implement 
l  for non-weighted graphs, 

only requires boolean 
matrix 

Can we get the best of both worlds? 
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Sparse adjacency matrix 
l  Rather than using an adjacency list, use an 

adjacency hashtable 
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E: 

hashtable [B,D] 

hashtable [A,D] 

hashtable [D] 
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hashtable [D] 

Sparse adjacency matrix 
l  Constant time lookup 
l  Space efficient 
l  Not good for dense graphs 
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Weighted graphs 

l  Adjacency list 
l  store the weight as an additional field in the list 
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Weighted graphs 

l  Adjacency matrix 
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⎨
⎧ ∈

=
otherwise0

),( if Ejiweight
aij

A  B  C  D  E 
A  0  8   0  3   0 
B  8  0   0  2   0 
C  0  0   0  10 0 
D  3  2  10  0  13 
E  0  0   0  13  0 
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Graph algorithms/questions 
l  Graph traversal (BFS, DFS) 
l  Shortest path from a to b 

l  unweighted 
l  weighted positive weights 
l  negative/positive weights 

l  Minimum spanning trees 
l  Are all nodes in the graph connected? 
l  Is the graph bipartite? 
l  hw15 and hw16 J 

Breadth First Search (BFS) on 
Trees 

Tree BFS 
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Tree BFS 
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Tree BFS 
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Tree BFS 
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Q: E, C, F 

Tree BFS 
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Q: E, C, F Frontier: the set of vertices 
that have been visited so far 
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Tree BFS 
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Tree BFS 
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Tree BFS 
l  What order does the algorithm traverse the 

nodes? 
l  BFS traversal visits the nodes in increasing 

distance from the root 

Tree BFS 

l  Does it visit all of the nodes? 
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Running time of Tree BFS 
l  Adjacency list 

l  How many times does it visit each vertex? 
l  How many times is each edge traversed? 
l  O(|V|+|E|) 

l  Adjacency matrix 
l  For each vertex visited, how much work is done? 
l  O(|V|2) 

BFS Recursively 

Hard to do! 

BFS for graphs 
l  What needs to change for graphs? 
l  Need to make sure we don’t visit a node multiple 

times 
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distance variable keeps 
track of how far from 
the starting node and 
whether we’ve seen the 
node yet 
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Is BFS correct? 
l  Does it visit all nodes reachable from the starting 

node? 
l  Can you prove it? 
l  Assume we “miss” some node ‘u’, i.e. a path 

exists, but we don’t visit ‘u’ 

S … U 

Is BFS correct? 
l  Does it visit all nodes reachable from the starting 

node? 
l  Can you prove it? 
l  Find the last node along the path to ‘u’ that was 

visited 

S … U … Z W

why do we know that 
such a node exists? 

Is BFS correct? 
l  Does it visit all nodes reachable from the starting 

node? 
l  Can you prove it? 
l  We visited ‘z’ but not ‘w’, which is a contradiction, 

given the pseudocode 

S … U … Z W

contradiction 
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Is BFS correct? 
l  Does it correctly label each node with the shortest 

distance from the starting node? 

l  Assume the algorithm labels a node with a longer 
distance.  Call that node ‘u’ 

S … U 

Is BFS correct? 
l  Does it correctly label each node with the shortest 

distance from the starting node? 

l  Find the last node in the path with the correct 
distance  

S … U … Z W

correct incorrect 

Is BFS correct? 
l  Does it correctly label each node with the shortest 

distance from the starting node? 

l  Find the last node in the path with the correct 
distance  

S … U … Z W

contradiction 

Runtime of BFS 
l  Nothing changed over our analysis of TreeBFS  
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Runtime of BFS 

l  Adjacency list: O(|V| + |E|) 
l  Adjacency matrix: O(|V|2) 

Depth First Search (DFS) 

Depth First Search (DFS) Depth First Search (DFS) 
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Tree DFS 
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Tree DFS 
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Frontier? 
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Tree DFS 
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DFS on graphs 

DFS on graphs 

mark all nodes as 
not visited 

DFS on graphs 

until all nodes have been 
visited repeatedly call 
DFS-Visit 
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DFS on graphs 

What happened 
to the stack? 

What does DFS do? 
l  Finds connected components 

l  Each call to DFS-Visit from DFS starts exploring a new 
set of connected components 

l  Helps us understand the structure/connectedness of a 
graph 

Is DFS correct? 

l  Does DFS visit all of the nodes in a graph? 

Running time? 

Like BFS 
l  Visits each node exactly once 
l  Processes each edge exactly twice (for an 

undirected graph) 
l  O(|V|+|E|) 
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DAGs 

Can represent dependency graphs 
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Topological sort 
l  A linear ordering of all the vertices such that for all 

edges (u,v) ∈ E, u appears before v in the ordering 
l  An ordering of the nodes that “obeys” the 

dependencies, i.e. an activity can’t happen until it’s 
dependent activities have happened 
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