

Longest common subsequence (LCS)

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 . \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 . \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$

Step 2: Build the solution from the bottom up

:!:。
 $\because \because:$

 $\left\{\max \left(\operatorname{LCS}\left(X_{1 . .,-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 . \ldots m-1}\right) \quad\right.\right.$ otherwise
 $\operatorname{LCS}\left(X_{1 . . . j}, Y_{1 \ldots k}\right)$
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

$L C S[i, j]=\left\{\begin{array}{cc}1+\operatorname{LCS}[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
j 0123456

LCS Algorithm

LCS-Length (X, Y)
$1 m \leftarrow$ length $[X]$
$2 \quad n \leftarrow$ length $[Y]$
$3 \quad c[0,0] \leftarrow 0$
$\Theta(n m)$
$\begin{array}{lc}4 & \text { for } i \leftarrow 1 \text { to } m \\ 5 & c[i, 0] \leftarrow 0\end{array}$
$\begin{array}{lr}5 & c[i, 0] \leftarrow 0 \\ 6 & \text { for } j \leftarrow 1 \text { to } n\end{array}$
$c[0, j] \leftarrow$
for $i \leftarrow 1$ to m
for $j \leftarrow 1$ to n
if $x_{i}=y_{i}$
$1+c i j-1, j-1$
$[i-1, j]>c[i, j-1$
$c[i, j] \leftarrow c[i-1, j]$
else
$c[i, j] \leftarrow c[i, j-1$
return $c[m, n]$

Keeping track of the solution

Our LCS algorithm only calculated the length of the LCS between X and Y
What if we wanted to know the actual sequence?

Keep track of this as well..

```
                            lrlol
                            lrlol
                            lrlol
                            lrlol
                            lrlol
                            lrlol
                            lrlol
                            lrlol
return \(c[m, n]\)
```


Longest increasing subsequence

Longest increasing subsequence

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find the longest increasing subsequence ($i_{1}, i_{2}, \ldots, i_{k}$), that is a subsequence where numbers in the sequence increase.

$$
52863697
$$

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find the longest increasing subsequence ($i_{1}, i_{2}, \ldots, i_{k}$), that is a subsequence where numbers in the sequence increase.

$$
52863697
$$

Step 1: Define the problem with respect to subproblems

52863697

Two options:
Either 5 is in the
LIS or it's not

Step 1: Define the problem with respect to subproblems

```
include 5
    5 + LIS(8 6 3 6 9 7)
```

 52863697
 Step 1: Define the problem
with respect to subproblems
include 5
52863697
$5+\underbrace{\operatorname{LIS}(8} 63697)$

Step 1: Define the problem with respect to subproblems

52863697
include 5

$$
5+\underbrace{\operatorname{LIS}(8} 663697)
$$

What is this function exactly?

Step 1: Define the problem with respect to subproblems

Step 1: Define the problem with respect to subproblems

52863697

include $5 \uparrow$
$5+\underbrace{\text { LIS' }^{\prime}}(863697)$
longest increasing sequence of the numbers starting with 8

Do we need to consider anything else for subsequences starting at 5 ?

Step 1: Define the problem with respect to subproblems
$\operatorname{LIS}(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}$
Longest increasing sequence for X is the longest increasing sequence starting at any element

And what is LIS' defined as (recursively)?

Step 1: Define the problem with respect to subproblems

$L I S(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}$
Longest increasing sequence for X
is the longest increasing sequence starting at any element
$L I S^{\prime}(i)=\max _{i i \ggg \operatorname{man} x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$
Longest increasing sequence starting at i

Step 2: build the solution from the bottom up

$$
L I S^{\prime}(i)=\max _{i: i>1 \text { and } x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . . n}\right)\right\}
$$

LIS' :
52863697
\uparrow

Step 2: build the solution from the bottom up

$L I S^{\prime}(i)=\max _{i: i>1 \text { and } x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$ LIS' :

52863697
\dagger

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i: i>1 \text { and } x_{i}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

LIS' :
52863697

Step 2: build the solution from the bottom up
 $L I S^{\prime}(i)=\max _{i \ggg \max x_{i, ~} \times x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$
 LIS': $\quad 1$
 52863697

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i i \gg \operatorname{man} x_{1} x_{1} x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

```
LIS':
52863697
```


Step 2: build the solution from the bottom up
 $L I S^{\prime}(i)=\max _{i \ggg \max X_{i}, X_{1}}\left\{1+L I S^{\prime}\left(X_{i .-n}\right)\right\}$
 LIS' :
 52863697

Step 2: build the solution from the bottom up
$L I S^{\prime}(i)=\max _{i i \ggg \max x_{i>X_{1}}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}$

```
LIS': 3 4 2 2 3 2 1 1
    5 2 8 6 3 6 9 7
    |
```


Step 2: build the solution from the bottom up

$$
L I S^{\prime}(i)=\max _{i i \gg \operatorname{man} x_{x}>x_{1}}\left\{1+L I S^{\prime}\left(X_{i . . n}\right)\right\}
$$

```
LIS': 3 4 4 2 2 2 3 2 1 1
```

 52863697
 \(\operatorname{LIS}(X)=\max _{i}\left\{L L S^{\prime}(i)\right\}\)

Step 2: build the solution from the bottom up

```
LIS(X)
    1 n}~\textrm{LENGTH}(X
    2 create array lis with n entrie
    for }i\leftarrown\mathrm{ to }
        max}\leftarrow
        for }j\leftarrowi+1\mathrm{ to }
            if X[j]>X[i]
        lis[i]}\leftarrow\operatorname{max
max}\leftarrow
    max}\leftarrow
    \mathrm{ for }i\leftarrow1\mathrm{ to }n
        if lis[i]}>>\operatorname{max
    return max
```

 if \(1+l i s[j]>\max\)
 \(\max \leftarrow 1+\) lis \([j]\)

Step 2: build the solution from the bottom up

```
LIS(X)
1 }n\leftarrow\operatorname{LENGTH}(X
2 create array lis with n entries start from the end (bottom)
| for }i\leftarrown\mathrm{ to 1
            for }j\leftarrowi+1\mathrm{ to }
            if }X[j]>X[i
            if 1+lis[j]> max
                max}\leftarrow1+lis[j
            lis[i]}\leftarrow\operatorname{max
    max \leftarrow0
    for }i\leftarrow1\mathrm{ to 
            if lis[i]> max
                max}\leftarrowlis[i
    return max
            to n
```


Step 2: build the solution from the bottom up

```
LIS(X)
    1}n\mp@code{n\leftarrow\operatorname{LENGTH}(X)
    LIS'(i)=\mp@subsup{m}{i:i>1 and x x >>x l}{l}}{1+LI\mp@subsup{S}{}{\prime}(\mp@subsup{X}{i..n}{})
    3 for }i\leftarrown\mathrm{ to 1
|
|
|
|
|
|
|
|
|
|
|
|\mp@code{for i\leftarrown to 1 }
3 for
```


Step 2: build the solution from the bottom up

```
LIS(X)
    1 n}~\textrm{LENGTH}(X
    2 create array lis with n entries
    3 for }i\leftarrown\mathrm{ to 1
        for }j\leftarrowi+1\mathrm{ to }
            if X[j]>X[i]
            if 1+lis[j]> max
                max}\leftarrow1+lis[j
                            LIS(X)=\mp@subsup{\operatorname{max}}{i}{}{LIS'(i)}
    11 for }i\leftarrow1\mathrm{ to }
            if lis[i]> max
    13 return max max\leftarrowlis[i]
```

 \(\left\lvert\, \begin{aligned} & \because: \% \\ & \because \because: \\ & \vdots: \%\end{aligned}\right.\)

Step 2: build the solution from the bottom up

```
LIS(X)
    1 n\leftarrowLENGTH(X)
    2 create array lis with n entries
    for }i\leftarrown\mathrm{ to }
        for }j\leftarrowi+1\mathrm{ to }n={\mp@code{li]
            if 1+lis[j]> max
                                    max}\leftarrow1+lis[j
        lis[i]}\leftarrow\operatorname{max
    max}\leftarrow
    for }i\leftarrow1\mathrm{ to }
        if lis[i]}>>\operatorname{max
    return max
```


Running time?

```
LIS(X)
    1 }n\leftarrow\operatorname{LENGTH}(X
    2 create array lis with n entries
    for }i\leftarrown\mathrm{ to }
        max}\leftarrow
        for }j\leftarrowi+1\mathrm{ to }
            if X[j]>X[i]
            if 1+lis[j]> max
                    max}\leftarrow1+lis[j
        lis[i]}\leftarrow\operatorname{max
    max}\leftarrow
1 for }i\leftarrow1\mathrm{ to }
if lis[i]> max
return max
```


Another solution

- Can we use LCS to solve this problem?

$$
52863697
$$

23566789

Memoization
- Sometimes it can be a challenge to write the function in a bottom-up fashion - Memoization: - Write the recursive function top-down - Alter the function to check if we've already calculated the value - If so, use the pre-calculate value - If not, do the recursive call(s)

Memoized fibonacci

Memoized fibonacci

Fibonacci(n)
1 if $n=1$ or $n=2$
2
return 1
ibonacci (n)
if $n=1$ or $n=2$
2
4 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-Memoized (n)

$1 \quad$ fib[1] $\leftarrow 1$
2 fib[2] $\leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad$ fib $[i] \leftarrow \infty$
5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if fib[n]<
2 return fib[n]
$3 x \leftarrow \operatorname{Fib}-\operatorname{Lookup}(n-1)+$ Fib-Looкup $(n-2)$
4 if $x<f i b[n]$
fib[n] $\leftarrow x$
6 return fib[n]

Memoized fibonacci

```
Bbonacol(n)
```

 if \(n=1\) or \(n=\)
 if $n=1$ or $n=2$
${ }_{4}^{3}$ else
return $\operatorname{Fibonacci}(n-1)+\operatorname{FibONACCl}(n-2)$

```
return \(\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)\)
```

4

Memoized fibonacci

```
Fibonacci(n)
```

if $n=1$ or $n=2$
rif $n=1$ or $n=2$
return
$\begin{array}{ll}3 & \text { else } \\ 4\end{array}$
eturn
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-Memoized (n)
What else could we use besides an array?
$1 \quad$ fib[1] $\leftarrow 1$

5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if fib $[n]<\infty$
2 return $f i b[n]$
$x \leftarrow$ Fib-Lookup $(n-1)+$ Fib-Lookup $(n-2)$
4 if $x<f i b[n]$
$f i b[n] \leftarrow x$
6 return $f i b[n]$

Memoized fibonacci

```
FibONACCI( }n\mathrm{ )
```

 1 if \(n=1\) or \(n=2\)
 \({ }_{4}^{2}\) else
 return \(\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)\)
    ```
Fibonacci-Memoized(n)
    1 fib[1]}\leftarrow
    fib[2]}\leftarrow
    for }i\leftarrow3\mathrm{ to }
    fib[i]}\leftarrow
    5 return Fib-Lookup(n)
    Fib-Lookup(n)
    1 if fib[n]<\infty
    return fib[n
    3}x\leftarrow\mathrm{ FIB-LOOKUP( }n-1)+\mathrm{ FIB-LOOKUP( }n-2
    4 if }x<fib[n
    5 If x< fib[n]\leftarrowx
    6 return fib[n]
```


Memoized fibonacci

Fibonacci(n)

```
=1 or n=
if }n=1\mathrm{ or }n=
else
```

return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-Memoized (n

$1 \quad$ fib[1] $\leftarrow 1$
fib $[2] \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad f i b[i] \leftarrow \infty$
5 return Fib-Lookup(n)
Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return $f i b[n]$
2 $\quad x \leftarrow$ Fib-Lookup $(n-1)+$ Fib-Lookup $(n-2)$ calculate the value 4 if $x<f i b[n]$,
5 fib[n]
6 return $f i b[n]$

Memoized fibonacci

```
ibonaCc(n)
    if }n=1\mathrm{ or }n=
return 1
3
return Fibonacci (n-1)+\operatorname{Fibonacci (n-2)}
```

```
Fibonacci-Memoized(n)
fib[1]}\leftarrow
    fib[2]}\leftarrow
    for }i\leftarrow3\mathrm{ to }
4 fib[i]}\leftarrow
return Fib-Lookup(n)
Fib-Lookup(n)
if fib[n]<\infty
2 return fib[n]
3 }x\leftarrow\mathrm{ Fib-Lookup (n-1)+ Fib-Lookup ( }n-
4 if }x<fib[n] store the valu
fib[n]\leftarrowx
return fib[n]
```


Quick summary

$\because:$
 : : :

- Step 1: Define the problem with respect to subproblems
- We did this for divide and conquer too. What's the difference?
- You can identify a candidate for dynamic programming if there is overlap or repeated work in the subproblems being created
- Step 2: build the solution from the bottom up
- Build the solution such that the subproblems referenced by larger problems are already solved
- Memoization is also an alternative

0-1 Knapsack problem

Pros

- Can be more intuitive to code/understand
- Can be memory savings if you don't need answers to all subproblems
- Cons
- Depending on implementation, larger overhead because of recursion (though often the functions are tail recursive)
- 0-1 Knapsack - A thief robbing a store finds n items worth $v_{1}, v_{2}, . ., v_{n}$ dollars and weight
$w_{1}, w_{2}, \ldots, w_{n}$ pounds, where v_{i} and w_{i} are integers. The thief can carry at most W pounds in the knapsack. Which items should the thief take if he/she wants to maximize value?
- Repetition is allowed, that is you can take multiple copies of any item

$$
K(w)=\max _{i, w_{i} \leq w}\left\{K\left(w-w_{i}\right)+v_{i}\right\}
$$

