
4/10/12

1

Dynamic
Programming

continued

David Kauchak
cs302

Spring 2012

Admin

l  CS lunch Thursday after class

Longest common
subsequence (LCS)
For a sequence X = x1, x2, …, xn, a subsequence is
a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ABA?

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

(for now, let’s just worry about counting the length of the LCS)

4/10/12

2

Step 2: Build the solution from
the bottom up

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

LCS(X1…j, Y1…k)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

LCS Algorithm

Θ(nm)

Keeping track of the solution
Our LCS algorithm only calculated the length of the
LCS between X and Y
What if we wanted to know the actual sequence?

Keep track of this as well…

4/10/12

3

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the
arrows to generate
the solution

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the
arrows to generate
the solution

BCBA

Longest increasing
subsequence

Given a sequence of numbers X = x1, x2, …, xn
find the longest increasing subsequence
(i1, i2, …, ik), that is a subsequence where
numbers in the sequence increase.

5 2 8 6 3 6 9 7

Longest increasing
subsequence

5 2 8 6 3 6 9 7

Given a sequence of numbers X = x1, x2, …, xn
find the longest increasing subsequence
(i1, i2, …, ik), that is a subsequence where
numbers in the sequence increase.

4/10/12

4

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7

Two options:
Either 5 is in the
LIS or it’s not

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

This would allow for the option of
sequences starting with 3 which
are NOT valid!

4/10/12

5

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
include 5

5 + LIS’(8 6 3 6 9 7)

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 5?

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7

5 + LIS’(6 3 6 9 7)

5 + LIS’(6 9 7)
5 + LIS’(9 7)
5 + LIS’(7)

include 5

5 + LIS’(8 6 3 6 9 7)

Step 1: Define the problem
with respect to subproblems

5 2 8 6 3 6 9 7
don’t
include 5

LIS(2 8 6 3 6 9 7)
Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS’?

Step 1: Define the problem
with respect to subproblems

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

And what is LIS’ defined as (recursively)?

4/10/12

6

Step 1: Define the problem
with respect to subproblems

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Longest increasing sequence starting at i

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’:

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/10/12

7

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/10/12

8

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/10/12

9

Step 2: build the solution from
the bottom up

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

)}('{max)(iLISXLIS
i

=

Step 2: build the solution from
the bottom up

Step 2: build the solution from
the bottom up

start from the end (bottom)

Step 2: build the solution from
the bottom up

)}('1{max)(' ... and 1: 1
nixxii

XLISiLIS
i

+=
>>

4/10/12

10

Step 2: build the solution from
the bottom up

)}('{max)(iLISXLIS
i

=

Step 2: build the solution from
the bottom up

initialization?

Running time?

Θ(n2)

Another solution

l  Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

4/10/12

11

Another solution

l  Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

Memoization
l  Sometimes it can be a challenge to write the function in

a bottom-up fashion

l  Memoization:
l  Write the recursive function top-down
l  Alter the function to check if we’ve already calculated the value
l  If so, use the pre-calculate value
l  If not, do the recursive call(s)

Memoized fibonacci Memoized fibonacci

4/10/12

12

Memoized fibonacci

Use ∞ to denote
uncalculated

Memoized fibonacci

Use ∞ to denote
uncalculated

What else could we use
besides an array?

Memoized fibonacci

Check if we already
calculated the value

Memoized fibonacci

calculate the value

4/10/12

13

Memoized fibonacci

store the value

Memoization
l  Pros

l  Can be more intuitive to code/understand
l  Can be memory savings if you don’t need answers to

all subproblems
l  Cons

l  Depending on implementation, larger overhead
because of recursion (though often the functions are
tail recursive)

Quick summary
l  Step 1: Define the problem with respect to subproblems

l  We did this for divide and conquer too. What’s the difference?
l  You can identify a candidate for dynamic programming if there is

overlap or repeated work in the subproblems being created

l  Step 2: build the solution from the bottom up
l  Build the solution such that the subproblems referenced by larger

problems are already solved
l  Memoization is also an alternative

0-1 Knapsack problem
l  0-1 Knapsack – A thief robbing a store finds n items

worth v1, v2, .., vn dollars and weight
w1, w2, …, wn pounds, where vi and wi are integers. The
thief can carry at most W pounds in the knapsack.
Which items should the thief take if he/she wants to
maximize value?

l  Repetition is allowed, that is you can take multiple copies
of any item

})({max)(
: iiwwi

vwwKwK
i

+−=
≤

