

Dynamic programming

- One of the most important algorithm tools!
- Very common interview question
- Method for solving problems where optimal solutions can be defined in terms of optimal solutions to sub-problems AND
- the sub-problems are overlapping

Fibonacci numbers

$1,1,2,3,5,8,13,21,34, \ldots$
What is the recurrence for the $\mathrm{n}^{\text {th }}$ Fibonacci number?

Fibonacci: a first attempt
Fibonacci(n)
1 if $n=1$ or $n=2$
$\begin{array}{ll}1 & \text { if } n=1 \\ 2 & \text { or } n=2 \\ \text { return } 1\end{array}$
3 else
return $\operatorname{FibonACCI}(n-1)+\operatorname{FibonACCI}(n-2)$
$F(n)=F(n-1)+F(n-2)$

The solution for n is defined with respect to the solution to smaller problems ($\mathrm{n}-1$ and $\mathrm{n}-2$)

Is it correct? ```Fibonacci(n) if }n=1\mathrm{ or }n= return 1 else return Fibonacci }(n-1)+\operatorname{FibonACCl}(n-2```	
$F(n)=F(n-1)+F(n-2)$	

Identifying a dynamic programming problem

Creating a dynamic programming solution

Step 1: Identify a solution to the problem with respect to smaller subproblems

- $F(n)=F(n-1)+F(n-2)$

Step 2: bottom up - start with solutions to the smallest problems and build solutions to the larger problems

Is it correct?

Fibonacci-DP(n)
$1 \quad f i b[1] \leftarrow 1$
2 fib[2] $\leftarrow 1$
for $i \leftarrow 3$ to n
$f i b[i] \leftarrow f i b[i-1]+f i b[i-2]$
return $f i b[n]$
$F(n)=F(n-1)+F(n-2)$

Running time?

Fibonacci-DP (n)
$1 \quad$ fib[1] $\leftarrow 1$
$2 f i b[2] \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad f i b[i] \leftarrow f i b[i-1]+f i b[i-2]$
5 return fib[n]
$\Theta(n)$

Step 1:
 What is the subproblem?

- Assume we have some black box solver (call it T) that can give us the answer to smaller subproblems
- How can we use the answer from this to answer our question?
- How many options for the root are there?

Step 2: Generate a solution from the bottom-up

BST-Count-DP (n) ```\(c[0]=1\) \(c[1]=1\) for \(k \leftarrow 2\) to \(n\) \(c[k] \leftarrow 0\) for \(i \leftarrow 1\) to \(k\) \(c[k] \leftarrow c[k]+c[i-1] * c[k-i]\) return \(c[n]\)```	$\|$$\because::-$ $\because: 8:-$ $\vdots: 8:$ $:$
$\begin{array}{llllllll} c & \left.c[0]^{*} c[1]+c[1]\right]^{*}[0] \\ 1 & 1 & \mid & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & \ldots & n \end{array}$	

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$
$X=A B A C D A B A B$

ABA?

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($\mathrm{i}_{1}, \mathrm{i}_{2}$, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

ABA

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}, a$ subsequence is a subset of the sequence defined by a set of increasing indices ($\mathrm{i}_{1}, \mathrm{i}_{2}$, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

> X = A B A C D A B A B

ACA?

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}, a$ subsequence is a subset of the sequence defined by a set of increasing indices ($\mathrm{i}_{1}, \mathrm{i}_{2}$, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

ACA

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}, a$ subsequence is a subset of the sequence defined by a set of increasing indices ($\mathrm{i}_{1}, \mathrm{i}_{2}$, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

DCA?

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices (i_{1}, i_{2}, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

Longest common subsequence (LCS)

Longest common subsequence (LCS)

- For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}, a$ subsequence is a subset of the sequence defined by a set of increasing indices ($\mathrm{i}_{1}, \mathrm{i}_{2}$, \ldots, i_{k}) where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$

$$
X=A B A C D A B A B
$$

AADAA

LCS problem	\% $\because: \%$
Given two sequences X and Y , a common subsequence is a subsequence that occurs in both X and Y	
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and $\mathrm{Y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$, What is the longest common subsequence?	
$X=A B C B D A B$	
$Y=B D C A B A$	

Step 1: Define the problem with respect to subproblems

 $X=A B C B D A B$ $Y=B D C A B A$Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=A B C B D A ? \\
& Y=B D C A B ?
\end{aligned}
$$

Is the last character part of the LCS?

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=A B C B D A ? \\
& Y=B D C A B ?
\end{aligned}
$$ are the same or they're different

Step 1: Define the problem with respect to subproblems

$$
X=A B C B D A A
$$

$$
\mathrm{Y}=\mathrm{BDCABA} \quad \begin{aligned}
& \text { LCS } \\
& \begin{array}{l}
\text { The characters are } \\
\text { part of the LCS }
\end{array} \\
& \text { What is the recursive } \\
& \text { relationship? }
\end{aligned}
$$

If they're the same

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right)+x_{n}
$$

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=\frac{\mathrm{ABCBDAB}}{\mathrm{LCS}} \\
& Y=\frac{\mathrm{BDCABA}}{\mathrm{~B}}
\end{aligned}
$$

If they're different
$\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 \ldots-\ldots-1}, Y\right)$

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& \mathrm{X}=\frac{\mathrm{ABCBDAB}}{\mathrm{LCs}} \\
& \mathrm{Y}=\mathrm{BDCABA}
\end{aligned}
$$

If they're different
$\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X, Y_{1 . . m-1}\right)$

Step 1: Define the problem with respect to subproblems

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

$$
X=A B C B D A B
$$

$$
Y=B D C A B A
$$

Step 1: Define the problem with respect to subproblems

$$
X=A B C B D A B
$$

$Y=B D C A B A$

```
\(\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 . n-1}, Y_{1 \ldots m-1}\right) & i f x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.\)
```

Step 2: Build the solution from the bottom up

$$
\begin{aligned}
& \operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}
1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & i f x_{n}=y_{m} \\
\max \left(L C S\left(X_{1 \ldots n-1}, Y\right), L C S\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }
\end{array}\right. \\
& \text { What types of subproblem } \\
& \text { solutions do we need to store? } \\
& \operatorname{LCS}\left(\mathrm{X}_{1 \ldots \mathrm{j}}, \mathrm{Y}_{1 \ldots \mathrm{k}}\right) \\
& \operatorname{LCS}[i, j]=\left\{\begin{array}{cl}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Step 2: Build the solution from the bottom up
 $L C S(X, Y)=\left\{\begin{array}{cc}1+L C S\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(L C S\left(X_{1 \ldots n-1}, Y\right), L C S\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$

What types of subproblem solutions do we need to store?

two different indices

$L C S[i, j]=\left\{\begin{array}{cc}1+\operatorname{LCS}[i-1, j-1] & i \text { if } x_{i}=y_{j} \\ \max (\operatorname{LCS}[i-1, j], \operatorname{LCS}[i, j-1] & \text { otherwise }\end{array}\right.$	

$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
$\because:$
:\%:
-8.

i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B & D C A B A \end{array}$
$0 \mathrm{x}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	01122 ?
5 D	0
6 A	0
7 B	0

$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & i \text { f } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
j 0123456

i	y_{j}	$B D C A B A$				
0	x_{i}	0	0	0	0	0

1	A	0	0	0	0	1	1	1	$\quad L C S(A B C B$
2	B	0	1	1	1	1	2	2	BDCAB)

3 C 0112222
4 B 011223
5 D 0
6 A 0
7 B 0

LCS[$[$, j] $=$	$\left\{\begin{array}{c} 1+L C S[i-1, j-1] \\ \max (L C S[i-1, j], L C S[i, j-1] \end{array}\right.$	if $x_{i}=y_{j}$ otherwise	
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B D C A B A \end{array}$	Where's the final answer?	
$0 \mathrm{x}_{\mathrm{i}}$	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$		
1 A	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2\end{array}$		
3 C	0112222		
4 B	0112233		
5 D	0122233		
6 A	0122334		
7 B	0122344		

The algorithm

LCS-Length (X, Y)
$1 m \leftarrow$ length $[X]$
$2 n \leftarrow$ length $[Y]$
$3 \quad c[0,0] \leftarrow 0$
4 for $i \leftarrow 1$ to m
$\begin{array}{lr}5 & c[i, 0] \leftarrow 0 \\ 6 & \text { for } j \leftarrow 1 \text { to } n\end{array}$
$c[0, j]$
1 to m
for $j \leftarrow 1$ to n
if $x_{i}=y_{i}$
elseif $c[i, i, j] \leftarrow 1+c[i-1, j-1$
$c[i, j] \leftarrow c[i-1, j]$
else
return $c[m, n]$
LCS-Length(X,Y)
LCS-Length(X,Y)
1 m\leftarrowlength[X]
1 m\leftarrowlength[X]
2}n\leftarrow\mathrm{ length }\
2}n\leftarrow\mathrm{ length }\
3 c[0,0]\leftarrow0
3 c[0,0]\leftarrow0
4 for }i\leftarrow1\mathrm{ to m
4 for }i\leftarrow1\mathrm{ to m
|f[i,0]}
|f[i,0]}
c[0,j]\leftarrow0
c[0,j]\leftarrow0
c[0,j]
c[0,j]
for }j\leftarrow1\mathrm{ to }
for }j\leftarrow1\mathrm{ to }
if \mp@subsup{x}{i}{}=\mp@subsup{y}{i}{}
if \mp@subsup{x}{i}{}=\mp@subsup{y}{i}{}
1,j-1
1,j-1
\leftarrowc[i-1,j]
\leftarrowc[i-1,j]
else
else
c[i,j]\leftarrowc[i,j-1]
c[i,j]\leftarrowc[i,j-1]
:日:

The algorithm

The algorithm

LCS-Length (X, Y)
$1 \quad m \leftarrow$ length $[X]$
$2 \quad n \leftarrow$ length $[\mathrm{X}]$
$\begin{array}{ll}3 & c[0,0] \leftarrow 0 \\ 4 & \text { for } i \leftarrow 1 \text { to }\end{array}$
$\begin{array}{lr}4 & \text { for } i \leftarrow \mathbf{1} \text { to } m \\ 5 & c[i, 0] \leftarrow\end{array}$
$\begin{array}{lc}6 & \text { for } j \leftarrow 1 \text { to } n \\ 7 & c[0, j] \leftarrow 0\end{array}$

$\mathbf{7}$	$c[0, j]$
8	for $i \leftarrow 1$ to m

The algorithm

LCS-Length (X, Y)
$1 \quad m \leftarrow$ length $[X]$
$2 n \leftarrow$ length $[Y]$
$3 c[0,0] \leftarrow 0$
4 for $i \leftarrow 1$ to m
$\begin{array}{ll}5 & \\ 6 & \text { for } j \leftarrow 1 \text { to } n\end{array}$
1 to n
$c[0, j] \leftarrow 0$
to m
for $j \leftarrow 1$ to n
if $x_{i}=y_{i}$
$\frac{c[i, j] \leftarrow 1+c[i-1, j-1]}{\text { elseif } c[i-1, j]>c[i, j-1]}$
else $c[i, j] \leftarrow c[i-1, j]$
else

$$
c[i, j] \leftarrow c[i, j-1]
$$

The algorithm

Running time?

LCS-Length (X, Y)
$1 m \leftarrow$ length $[X]$
2 $n \leftarrow$ length $[Y]$
$3 \quad c[0,0] \leftarrow 0$
$\Theta(n m)$
$\begin{array}{ll}4 & \text { for } i \leftarrow \mathbf{1} \text { to } m \\ 5 & c[i, 0] \leftarrow 0\end{array}$

$c[i, 0]$
for $j \leftarrow 0$
\qquad to n
$c[0, j]$

for $i \leftarrow 1$ to m
for $j \leftarrow 1$ to n
if $x_{i}=y$
[i, $]-1+c[i-1, j-1$
$c[i, j] \leftarrow c[i-1, j]$
else $\quad c[i, j] \leftarrow c[i, j-1$
return $c[m, n]$

