
4/5/12

1

Dynamic
Programming

David Kauchak
cs302

Spring 2012

Dynamic programming

l  One of the most important algorithm tools!
l  Very common interview question

l  Method for solving problems where optimal
solutions can be defined in terms of optimal
solutions to sub-problems

 AND
l  the sub-problems are overlapping

Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, …
What is the recurrence for the nth Fibonacci
number?

F(n) = F(n-1) + F(n-2)

The solution for n is defined with respect to the
solution to smaller problems (n-1 and n-2)

Fibonacci: a first attempt

4/5/12

2

Is it correct?

F(n) = F(n-1) + F(n-2)

Running time

l  Each call creates two recursive calls
l  Each call reduces the size of the problem by 1 or 2
l  Creates a full binary of depth n
l  O(2n)

Can we do better?
Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

A lot of repeated work!
Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

4/5/12

3

Identifying a dynamic
programming problem
The solution can be defined with respect to
solutions to subproblems

The subproblems created are overlapping, that is
we see the same subproblems repeated

Creating a dynamic
programming solution
Step 1: Identify a solution to the problem with respect to
smaller subproblems

l  F(n) = F(n-1) + F(n-2)

Step 2: bottom up - start with solutions to the smallest
problems and build solutions to the larger problems

use an array to
store solutions
to subproblems

Is it correct?

F(n) = F(n-1) + F(n-2)

Running time?

Θ(n)

4/5/12

4

Counting binary search trees

l  How many unique binary search trees can be
created using the numbers 1 through n?

4

2

 1 3 6

5

Step 1:
What is the subproblem?
l  Assume we have some black box solver (call it T)

that can give us the answer to smaller
subproblems

l  How can we use the answer from this to answer
our question?

l  How many options for the root are there?

 1 2 3 n

…

Subproblems
 i

How many trees have i as the root?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, i+n

?

4/5/12

5

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, i+n

T(i-1)

subproblem of
size i-1

?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, i+n

T(i-1) Number of trees for i+1, i+2, …, i+n
is the same as the number of trees
from 1, 2, …, n-i

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, i+n

T(i-1) T(n-i)

Given solutions for T(i-1) and T(n-i) how
many trees are there with i as the root?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, i+n

T(i-1) T(n-i)

T(i) = T(i-1) * T(n-i)

4/5/12

6

Step 1: define the answer with
respect to subproblems

T(i) = T(i-1) * T(n-i)

∑ =
−−=

n

i
inTiTnT

1
)(*)1()(

Is there a problem?

As with Fibonacci, we’re
repeating a lot of work

Step 2: Generate a solution
from the bottom-up

0 1 2 3 4 5 … n

4/5/12

7

0 1 2 3 4 5 … n
1 1

0 1 2 3 4 5 … n
1 1

c[0]*c[1] + c[1]*c[0]

0 1 2 3 4 5 … n
1 1

2

1

1

2

c[0]*c[1] + c[1]*c[0]

0 1 2 3 4 5 … n
1 1 2

4/5/12

8

0 1 2 3 4 5 … n
1 1 2

c[0]*c[2] + c[1]*c[1] + c[2]*c[0]

1 2 3

0 1 2 3 4 5 … n
1 1 2 5

0 1 2 3 4 5 … n
1 1 2 5 …

Running time?

Θ(n2)

4/5/12

9

Longest common
subsequence (LCS)
For a sequence X = x1, x2, …, xn, a subsequence is
a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ABA?

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ABA

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ACA?

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ACA

4/5/12

10

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

DCA?

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

DCA

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

AADAA?

Longest common
subsequence (LCS)

l  For a sequence X = x1
, x2, …, xn, a

subsequence is a subset of the sequence
defined by a set of increasing indices (i1, i2,
…, ik) where 1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

AADAA

4/5/12

11

LCS problem
Given two sequences X and Y, a common
subsequence is a subsequence that occurs in both X
and Y
Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn, What is the longest common
subsequence?

X = A B C B D A B

Y = B D C A B A

LCS problem
l  Given two sequences X and Y, a common

subsequence is a subsequence that occurs in both
X and Y

l  Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn, What is the longest common
subsequence?

X = A B C B D A B

Y = B D C A B A

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

Step 1: Define the problem
with respect to subproblems

X = A B C B D A ?

Y = B D C A B ?

Is the last character part of the LCS?

4/5/12

12

Step 1: Define the problem
with respect to subproblems

X = A B C B D A ?

Y = B D C A B ?

Two cases: either the characters
are the same or they’re different

Step 1: Define the problem
with respect to subproblems

X = A B C B D A A

Y = B D C A B A

If they’re the same

The characters are
part of the LCS

nmn xYXLCSYXLCS += −−),(),(1...11...1

LCS

What is the recursive
relationship?

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 YXLCSYXLCS n−=

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 −= mYXLCSYXLCS

4/5/12

13

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

X = A B C B D A B
Y = B D C A B A

?

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

(for now, let’s just worry about counting the length of the LCS)

Step 2: Build the solution from
the bottom up

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

two different indices

Step 2: Build the solution from
the bottom up

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

4/5/12

14

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

For Fibonacci and tree counting,
we had to initialize some entries in
the array. Any here?

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0
0
0
0
0
0
0

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Need to initialize values within 1
smaller in either dimension.

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 ?
0
0
0
0
0
0

LCS(A, B)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0
0
0
0
0
0
0

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

4/5/12

15

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 ?
0
0
0
0
0
0

LCS(A, BDCA)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1
0
0
0
0
0
0

LCS(A, BDCA)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 ?
0
0
0

LCS(ABCB, BDCAB)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3
0
0
0

LCS(ABCB, BDCAB)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

4/5/12

16

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Where’s the
final answer?

The algorithm

The algorithm

Base case initialization

The algorithm

Fill in the matrix

4/5/12

17

The algorithm The algorithm

The algorithm Running time?

Θ(nm)

