

Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, \dots What is the recurrence for the nth Fibonacci number?

F(n) = F(n-1) + F(n-2)

The solution for n is defined with respect to the solution to smaller problems (n-1 and n-2)

Identifying a dynamic programming problem

The solution can be defined with respect to solutions to subproblems

The subproblems created are overlapping, that is we see the same subproblems repeated

Longest common subsequence (LCS)

For a sequence $X = x_1, x_2, ..., x_n$, a subsequence is a subset of the sequence defined by a set of increasing indices $(i_1, i_2, ..., i_k)$ where $1 \le i_1 < i_2 < ... < i_k \le n$

X = A B A C D A B A B

ABA?

Longest common subsequence (LCS)

 For a sequence X = x₁, x₂, ..., x_n, a subsequence is a subset of the sequence defined by a set of increasing indices (i₁, i₂, ..., i_k) where 1 ≤ i₁ < i₂ < ... < i_k ≤ n

X = A B A C D A B A B

ACA?

Longest common subsequence (LCS)

 For a sequence X = x₁, x₂, ..., x_n, a subsequence is a subset of the sequence defined by a set of increasing indices (i₁, i₂, ..., i_k) where 1 ≤ i₁ < i₂ < ... < i_k ≤ n

$\mathsf{X}=\mathsf{A}\,\mathsf{B}\,\mathsf{A}\,\mathsf{C}\,\mathsf{D}\,\mathsf{A}\,\mathsf{B}\,\mathsf{A}\,\mathsf{B}$

DCA?

Longest common subsequence (LCS)

For a sequence X = x₁, x₂, ..., x_n, a subsequence is a subset of the sequence defined by a set of increasing indices (i₁, i₂, ..., i_k) where 1 ≤ i₁ < i₂ < ... < i_k ≤ n

X = A B A C D A B A B

AADAA?

$LCS[i, j] = \begin{cases} 1 + LCS(i-1, j-1) & \text{if } x \\ \max(LCS(i-1, j), LCS(i, j-1)) & \text{otherwise} \end{cases}$	$x_i = y_j$ erwise	$LCS[i, j] = \begin{cases} 1 + LCS[i-1, j-1] & \text{if } x_i = y_j \\ \max(LCS[i-1, j], LCS[i, j-1]) & \text{otherwise} \end{cases}$
j 0 1 2 3 4 5 6 i y B D C A B 5 D 6 A 7 B For Fibonacci and tree courses we had to initialize some end the array. Any here?	ntring, ntries in	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

<i>LCS</i> [<i>i</i> , <i>j</i>] =	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ \max(LCS[i - 1, j], LCS[i, j - 1] \end{cases}$	<i>i</i> f $x_i = y_j$ otherwise	
j _i	0 1 2 3 4 5 6 y _j BDCABA		I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0	LCS(A, E	3)

LCS[i, j] =	$\begin{cases} 1 + LCS[i-1, j-1] & \text{if } x_i = y_j \\ \max(LCS[i-1, j], LCS[i, j-1] & \text{otherwise} \end{cases}$	
j	0 1 2 3 4 5 6 V BDCABA	
	y _j bbcaba	
0 x _i	0 0 0 0 0 0	
1 A	0 0	
2 B	0	
3 C	0	
4 B	0	
5 D	0	
6 A	0	
7 B	0	

LCS[i, j] =	$ \frac{1 + LCS[i - 1, j - 1]}{\max(LCS[i - 1, j], LCS[i, j - 1]} $	$if x_i = y_j$ otherwise	
j i	0 1 2 3 4 5 6 y _j BDCABA		
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0	LCS(A, BD(CA)

<i>LCS</i> [<i>i</i> , <i>j</i>] =	$\begin{cases} 1 + LCS[i-1, j-1] \\ \max(LCS[i-1, j], LCS[i, j]) \end{cases}$	$if x_i = y_j$ j-1] otherwise	
j _ i	0 1 2 3 4 5 6 y _j BDCABA		
0 x _i	0 0 0 0 0 0 0		
1 A	00001	LCS(A, BD	CA)
2 B	0		
3 C	0		
4 B	0		
5 D	0		
6 A	0		
7 B	0		

<i>LCS</i> [<i>i</i> , <i>j</i>] =	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ max(LCS[i - 1, j], LCS[i, j - 1]) \end{cases}$	$\frac{if x_i = y_j}{-1] \text{ otherwise}}$
j i	0 1 2 3 4 5 6 y _j BDCABA	ſ
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 2 2 0 1 1 2 2 2 0 1 1 2 2 ? 0 0 0	LCS(ABCB, BDCAB)

LCS[i, j] =	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ \max(LCS[i - 1, j], LCS[i] \end{cases}$	$if x_i = y_j$, $j - 1$] otherwise	
j	0 1 2 3 4 5 6 v: BDCABA	l	
	,,		
0 X _i 1 A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2 B	0 1 1 1 1 2 2	LCS(ABCB, BD	CAB)
3 C	0 1 1 2 2 2 2		
4 B	0 1 1 2 2 3		
5 D	0		
6 A	0		
7 B	0		

LCS[i, j] = -	$\begin{cases} 1 + LCS[i - 1, j - 1] \\ max(LCS[i - 1, j], LCS[i, j - 1] \end{cases}$	$if x_i = y_j$ otherwise	
j i	0 1 2 3 4 5 6 y _j BDCABA		I
0 x _i 1 A 2 B 3 C 4 B 5 D 6 A 7 B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Where's the final answer?	

