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Administrative 

l  Midterm 
l  must take it by Friday at 6pm 

l  No assignment over the break 

Hashtables 
l  Constant time insertion and search (and deletion in 

some cases) for a large space of keys 
l  Applications 

l  Does x belong to S? 
l  I’ve found them very useful 
l  compilers 
l  databases 
l  search engines 
l  storing and retrieving non-sequential data 
l  save memory over an array 

Key/data pair 
l  The key is a numeric representation of a relevant 

portion of the data 
l  For example: 

 

integer number 

data key 
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Key/data pair 
l  The key is a numeric representation of a relevant 

portion of the data 
l  For example: 

 

string number 
ascii code 

data key 

Key/data pair 
l  The key is a numeric representation of a relevant 

portion of the data 
l  For example: 

 

account 
information 

number 

ascii code 
of first and 
last name 

data key 

Why not just arrays aka  
direct-address tables? 

Array 

universe of keys - U 
array must be as large 
as the universe of keys 

Why not just arrays? 

Array 

array must be as large 
as the universe of keys 

space of actual keys is 
often much smaller than 
the actual keys 

actual 
keys, n 

universe of keys - U 
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Why not arrays? 
l  Think of indexing all last names < 10 characters 

l  Census listing of all last names 
http://www.census.gov/genealogy/names/dist.all.last 
l  88,799 last names 

l  What is the size of our space of keys? 
l  2610 = a big number 

l  Not feasible! 
l  Even if it were, not space efficient 

The load of a table/hashtable 
l  m = number of possible entries in the table 
l  n = number of keys stored in the table 
l  α = n/m is the load factor of the hashtable 
l  What is the load factor of the last example? 

l  α = 88,799 / 2610 would be the load factor of last 
names using direct-addressing 

l  The smaller α, the more wasteful the table 
l  The load also helps us talk about run time 

Hash function, h 
l  A hash function is a function that maps the 

universe of keys to the slots in the hashtable 

universe of keys - U 

m << |U| 

hash function, h 

Hash function, h 
l  A hash function is a function that maps the 

universe of keys to the slots in the hashtable 

universe of keys - U 

m << |U| 

hash function, h 
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Hash function, h 
l  A hash function is a function that maps the 

universe of keys to the slots in the hashtable 

universe of keys - U 

m << |U| 

hash function, h 

Hash function, h 
l  What can happen if  m ≠ |U|? 

universe of keys - U 

m << |U| 

hash function, h 

Collisions 
l  If m ≠ |U|, then two keys can map to the same position in 

the hashtable (pidgeonhole principle)  

universe of keys - U 

m << |U| 

hash function, h 

Collisions 

l  A collision occurs when h(x) = h(y), but x ≠ y 
l  A good hash function will minimize the 

number of collisions 
l  Because the number of hashtable entries is 

less than the possible keys (i.e. m < |U|) 
collisions are inevitable! 

l  Collision resolution techniques? 
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Collision resolution by chaining 
l  Hashtable consists of an array of linked lists 

l  When a collision occurs, the element is added to 
linked list at that location 

l  If two entries x ≠ y have the same hash value h(x) = 
h(x), then T(h(x)) will contain a linked list with both 
values 

ChainedHashInsert(     ) 

Insertion 

Insertion 

h(     ) hash function is a mapping from 
the key to some value < m 

Insertion 

h(     ) 
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Deletion 

x is a reference not the value, why? 

Remember, we’re hashing based on a 
numeric representation of the actual 
underlying data 

Deletion 

Deletion Search 

ChainedHashSearch(     ) 
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Search 

h(     ) 

Search 

ChainedHashSearch(     ) 

Search 

ChainedHashSearch(     ) 

Search 

ChainedHashSearch(     ) 
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Running time 
Θ(1) 

O(length of the chain) 

O(length of the chain) 

Length of the chain 

l  Worst case? 

Length of the chain 

l  Worst case? 
l  All elements hash to the same location 
l  h(k) = 4 
l  O(n) 

…
 

Length of the chain 

l  Average case 
l  Depends on how well the hash function distributes 

the keys 
l  What is the best we could hope for a hash function? 

l  simple uniform hashing: an element is equally likely to 
end up in any of the m slots 

l  Under simple uniform hashing what is the average 
length of a chain in the table? 
l  n keys over m slots = n / m = α 
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Average chain length 
l  If you roll a fair m sided die n times, how many 

times are we likely to see a given value? 

l  For example, 10 sided die: 
l  1 time 

l  1/10 

l  100 times 
l  100/10 = 10 

Search average running time 

l  Two cases: 
l  Key is not in the table 

l  must search all entries 
l  Θ(1 + α) 

l  Key is in the table 
l  on average search half of the entries 
l  O(1 + α) 

Hash functions 
l  What makes a good hash function? 

l  Approximates the assumption of simple uniform hashing 
l  Deterministic – h(x) should always return the same value 
l  Low cost – if it is expensive to calculate the hash value 

(e.g. log n) then we don’t gain anything by using a table 
l  Challenge: we don’t generally know the distribution 

of the keys 
l  Frequently data tend to be clustered (e.g. similar strings, 

run-times, SSNs).  A good hash function should spread 
these out across the table 

Hash functions 

What are some hash functions 
you’ve heard of before? 
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Division method 
l  h(k) = k mod m 

m      k        h(k) 

11      25 

11      1 
11      17 
13      133 
13      7 
13      25 

3 
1 

6 
3 
7 
12 

Division method 

l  Don’t use a power of two.  Why? 

l  if h(k) = k mod 2p, the hash function is just 
the lower p bits of the value 

m  k   bin(k)  h(k) 

8  25  11001  1 

8  1   00001  1 

8  17  10001  1 

 

Division method 

l  Good rule of thumb for m is a prime number 
not to close to a power of 2 

l  Pros: 
l  quick to calculate 
l  easy to understand 

l  Cons: 
l  keys close to each other will end up close in the 

hashtable 

Multiplication method 
l  Multiply the key by a constant 0 < A < 1 and 

extract the fractional part of kA, then scale by m 
to get the index 

⎣ ⎦⎣ ⎦)()( kAkAmkh −=

extracts the fractional 
portion of kA 



3/22/12 

11 

Multiplication method 

l  Common choice is for m as a power of 2 and 

l  Why a power of 2? 
l  Book has other heuristics  

6180339887.02/)15( =−=A

⎣ ⎦⎣ ⎦)()( kAkAmkh −=

Multiplication method 

m  k  A 

8  15  0.618 

8  23  0.618 

8  100  0.618 

 

9.27 floor(0.27*8) = 2 

kA   h(k) 

14.214 floor(0.214*8) = 1 

61.8 floor(0.8*8) = 6 

⎣ ⎦⎣ ⎦)()( kAkAmkh −=

Other hash functions 
l  http://en.wikipedia.org/wiki/

List_of_hash_functions 
l  cyclic redundancy checks (i.e. disks, cds, dvds) 
l  Checksums (i.e. networking, file transfers) 
l  Cryptographic (i.e. MD5, SHA) 

Open addressing 
l  Keeping around an array of linked lists can be 

inefficient and a hassle 
l  Like to keep the hashtable as just an array of 

elements (no pointers) 
l  How do we deal with collisions? 

l  compute another slot in the hashtable to examine 
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Hash functions with  
open addressing 
l  Hash function must define a probe sequence which is 

the list of slots to examine when searching or inserting 

l  Hash function takes an additional parameter i which is 
the number of collisions that have already occurred 

l  The probe sequence must be a permutation of every 
hashtable entry.  Why? 

{ h(k,0), h(k,1), h(k,2), …, h(k, m-1) }  is a permutation of 
{ 0, 1, 2, 3, …, m-1 } 

Probe sequence 

h(k, 0) 

Probe sequence 

h(k, 1) 

Probe sequence 

h(k, 2) 
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Probe sequence 

h(k, 3) 

Probe sequence 

h(k, …) 

… 

must visit all locations 

Open addressing: Insert Open addressing: Insert 

get the first hashtable 
entry to look in  



3/22/12 

14 

Open addressing: Insert 

follow the probe 
sequence until we find 
an open entry  

Open addressing: Insert 

return the open entry  

Open addressing: Insert 

  hashtable can fill up 

Open addressing: search 
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Open addressing: search Open addressing: search 

“breaks” the probe sequence 

Open addressing: delete 

l  Two options: 
l  mark node as “deleted” (rather than null) 

l  modify search procedure to continue looking if a 
“deleted” node is seen 

l  modify insert procedure to fill in “deleted” entries 
l  increases search times 

l  if a lot of deleting will happen, use chaining 

Probing schemes 
l  Linear probing – if a collision occurs, go to the next slot 

l  h(k,i) = (h(k) + i) mod m 
l  Does it meet our requirement that it visits every slot? 
l  for example, m = 7 and h(k) = 4 

h(k,0) = 4 
h(k,1) = 5 
h(k,2) = 6 
h(k,3) = 0 
h(k,3) = 1 
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Linear probing: search 

h(     , 0) 

Linear probing: search 

h(     , 1) 

Linear probing: search 

h(     , 2) 

Linear probing: search 

h(     , 3) 
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Linear probing: search 

h(     , 3) 

Linear probing 
l  Problem: 

l  primary clustering – long rungs of occupied slots 
tend to build up and these tend to grow 

any value here results in an 
increase in the cluster 

become more and more probable 
for a value to end up in that range 

Quadratic probing 
l  h(k,i) = (h(k) + c1i + c2i2) mod m 

l  Rather than a linear sequence, we probe based on a 
quadratic function 

l  Problems: 
l  must pick constants and m so that we have a proper probe 

sequence 
l  if h(x) = h(y), then h(x,i) = h(y,i) for all i 
l  secondary clustering 

Double hashing 
l  Probe sequence is determined by a second 

hash function 
l  h(k,i) = (h1(k) + i(h2(k)) mod m 

l  Problem: 
l  h2(k) must visit all possible positions in the table 
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Running time of insert and 
search for open addressing 
l  Depends on the hash function/probe sequence 
l  Worst case? 

l  O(n) – probe sequence visits every full entry first 
before finding an empty  

Running time of insert and 
search for open addressing 
l  Average case? 
l  We have to make at least one probe 

Running time of insert and 
search for open addressing 
l  Average case? 
l  What is the probability that the first probe will not 

be successful (assume uniform hashing function)? 

α 

Running time of insert and 
search for open addressing 
l  Average case? 
l  What is the probability that the first two probed 

slots will not be successful? 

~α2 
why 
‘~’? 
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Running time of insert and 
search for open addressing 
l  Average case? 
l  What is the probability that the first three probed 

slots will not be successful? 

~α3 

Running time of insert and 
search for open addressing 

l  Average case:  expected number of probes 
l  sum of the probability of making 1 probe, 2 

probes, 3 probes, …  
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How big should a hashtable be? 

l  A good rule of thumb is the hashtable should 
be around half full 

l  What happens when the hashtable gets full? 
l  Copy: Create a new table and copy the values over 

l  results in one expensive insert 
l  simple to implement 

l  Amortized copy:  When a certain ratio is hit, grow 
the table, but copy the entries over a few at a time 
with every insert 
l  no single insert is expensive and can guarantee per insert 

performance 
l  more complicated to implement 


