

Administrative

- Midterm
- must take it by Friday at 6 pm
- No assignment over the break

Hashtables

Key/data pair

- The key is a numeric representation of a relevant portion of the data
- For example:

Why not arrays?

- Think of indexing all last names < 10 characters
- Census listing of all last names
http://www.census.gov/genealogy/names/dist.all.last
- 88,799 last names
- What is the size of our space of keys?
- $26^{10}=$ a big number
- Not feasible!
- Even if it were, not space efficient

The load of a table/hashtable

- $m=$ number of possible entries in the table
- $\mathrm{n}=$ number of keys stored in the table
- $\alpha=n / m$ is the load factor of the hashtable
- What is the load factor of the last example?
- $\alpha=88,799 / 26^{10}$ would be the load factor of last names using direct-addressing
- The smaller α, the more wasteful the table
- The load also helps us talk about run time

Hash function, h

- A hash function is a function that maps the universe of keys to the slots in the hashtable

Hash function, h

- What can happen if $m \neq|\mathrm{U}|$?

Collisions

Collisions

- A collision occurs when $h(x)=h(y)$, but $x \neq y$
- A good hash function will minimize the number of collisions
- Because the number of hashtable entries is less than the possible keys (i.e. $\mathrm{m}<|\mathrm{U}|$) collisions are inevitable!
- Collision resolution techniques?

Length of the chain - Worst case?	

Length of the chain

- Worst case?
- All elements hash to the same location
- $\mathrm{h}(\mathrm{k})=4$
- O(n)

Length of the chain

- Average case
- Depends on how well the hash function distributes the keys
- What is the best we could hope for a hash function?
- simple uniform hashing: an element is equally likely to end up in any of the m slots
- Under simple uniform hashing what is the average length of a chain in the table?
- n keys over m slots $=n / m=\alpha$

Average chain length

Search average running time

- If you roll a fair m sided die n times, how many times are we likely to see a given value?
- For example, 10 sided die:
- 1 time
- 1/10
- 100 times
- 100/10 = 10
- Two cases:
- Key is not in the table - must search all entries
- $\Theta(1+\alpha)$
- Key is in the table
- on average search half of the entries
- $\mathrm{O}(1+\alpha)$

Hash functions	
What are some hash functions	
you've heard of before?	

Division method - $h(k)=k \bmod m$			
	k		
11	25	3	
11	1	1	
11	17	6	
13	133	3	
13	7	7	
13	25	12	

Division method

- Good rule of thumb for m is a prime number not to close to a power of 2
- Pros:
- quick to calculate
- easy to understand
- Cons:
- keys close to each other will end up close in the hashtable

Multiplication method
 $$
h(k)=\lfloor m(k A-\lfloor k A\rfloor)\rfloor
$$

Multiplication method

m	k	A	kA	$\mathrm{h}(\mathrm{k})$
8	15	0.618	9.27	$\mathrm{floor}\left(0.27^{*} 8\right)=2$
8	23	0.618	14.214	floor $\left(0.214^{*} 8\right)=1$
8	100	0.618	61.8	floor $\left(0.8^{*} 8\right)=6$

$$
h(k)=\lfloor m(k A-\lfloor k A\rfloor)\rfloor
$$

Other hash functions

Open addressing

- http://en.wikipedia.org/wiki/

List of hash functions

- cyclic redundancy checks (i.e. disks, cds, dvds)
- Checksums (i.e. networking, file transfers)
- Cryptographic (i.e. MD5, SHA)
- Keeping around an array of linked lists can be inefficient and a hassle
- Like to keep the hashtable as just an array of elements (no pointers)
- How do we deal with collisions?
- compute another slot in the hashtable to examine

Hash functions with open addressing

- Hash function must define a probe sequence which is the list of slots to examine when searching or inserting
- Hash function takes an additional parameter i which is the number of collisions that have already occurred
- The probe sequence must be a permutation of every hashtable entry. Why?
$\{h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)\}$ is a permutation of \{ 0, 1, 2, 3, ..., m-1 \}

Open addressing: search \mid

Open addressing: delete

Probing schemes

- Linear probing - if a collision occurs, go to the next slot
- $h(k, i)=(h(k)+i) \bmod m$
- Does it meet our requirement that it visits every slot?
- for example, $m=7$ and $h(k)=4$
$h(k, 0)=4$
$h(k, 1)=5$
$h(k, 2)=6$
$h(k, 3)=0$
$h(k, 3)=1$

Quadratic probing

- $h(k, i)=\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m$
- Rather than a linear sequence, we probe based on a quadratic function
- Problems:
- must pick constants and m so that we have a proper probe sequence
- if $h(x)=h(y)$, then $h(x, i)=h(y, i)$ for all
- secondary clustering

Double hashing

- Probe sequence is determined by a second hash function
- $\mathrm{h}(\mathrm{k}, \mathrm{i})=\left(\mathrm{h}_{1}(\mathrm{k})+\mathrm{i}\left(\mathrm{h}_{2}(\mathrm{k})\right) \bmod \mathrm{m}\right.$
- Problem:
- $h_{2}(k)$ must visit all possible positions in the table

Running time of insert and search for open addressing

- Depends on the hash function/probe sequence
- Worst case?
- $O(n)$ - probe sequence visits every full entry first before finding an empty

Running time of insert and search for open addressing

- Average case?
- We have to make at least one probe

Running time of insert and search for open addressing

Running time of insert and search for open addressing

- Average case?
- What is the probability that the first two probed slots will not be successful?

Running time of insert and search for open addressing

- Average case?
- What is the probability that the first three probed slots will not be successful?
$\sim \alpha^{3}$
$\square \square \square||\square| \square| \square$

Average number of probes	
$E[\text { probes }]=\frac{1}{1-\alpha}$	
$\alpha \quad$ Average number of searches	
0.1 1/(1-.1) $=1.11$	
$0.25 \quad 1 /(1-.25)=1.33$	
$0.5 \quad 1 /(1-.5)=2$	
$0.75 \quad 1 /(1-.75)=4$	
$0.9 \quad 1 /(1-.9)=10$	
$0.95 \quad 1 /(1-.95)=20$	
$0.99 \quad 1 /(1-.99)=100$	

Running time of insert and search for open addressing

- Average case: expected number of probes
- sum of the probability of making 1 probe, 2 probes, 3 probes, ...

$$
\begin{aligned}
E[\text { probes }] & =1+\alpha+\alpha^{2}+\alpha^{3}+\ldots \\
& =\sum_{i=0}^{m} \alpha^{i} \\
& <\sum_{i=0}^{\infty} \alpha^{i} \\
& =\frac{1}{1-\alpha}
\end{aligned}
$$

How big should a hashtable be?

- A good rule of thumb is the hashtable should be around half full
- What happens when the hashtable gets full?
- Copy: Create a new table and copy the values over - results in one expensive insert
- simple to implement
- Amortized copy: When a certain ratio is hit, grow the table, but copy the entries over a few at a time with every insert
- no single insert is expensive and can guarantee per insert performance
- more complicated to implement

