
3/20/12	

1	

+

David Kauchak
cs312
Review

+
Midterm

n  Will be posted online this afternoon

n  You will have 2 hours to take it
n  watch your time!
n  if you get stuck on a problem, move on and come back

n  Must take it by Friday at 6pm

n  You may use:
n  your book
n  your notes
n  the class notes
n  ONLY these things

n  Do NOT discuss it with anyone until after Friday at 6pm

+ Midterm

n General
n what is an algorithm
n algorithm properties
n pseudocode
n proving correctness
n run time analysis
n memory analysis

+ Midterm

n Big O
n proving bounds
n  ranking/ordering of functions

n Amortized analysis

n Recurrences
n  solving recurrences

n  substitution method
n  recursion-tree
n master method

3/20/12	

2	

+ Midterm

n Sorting
n  insertion sort
n merge sort
n quick sort

n partition function
n bubble sort
n heap sort

+ Midterm

n Divide and conquer
n  divide up the data (often in half)
n  recurse
n  possibly do some work to combine the answer

n Calculating order statistics/medians

n Basic data structures
n  set operations
n  array
n  linked lists
n  stacks
n  queues

+ Midterm

n Heaps
n binary heaps
n binomial heaps

n Search trees
n  BSTs
n  B-trees

+
Midterm

n  Other things to know:
n  run-times (you shouldn’t have to look all of them up, though I don’t

expect you to memorize them either)

n  when to use an algorithm

n  proof techniques

n  look again an proofs by induction

3/20/12	

3	

+ Data structures so far

n When would we use:
n  Arrays

n  get and set particular indices in constant time
n  linked list

n  insert and delete in constant time
n  stack

n  LIFO
n  queue

n  FIFO

+ Data structures so far

n When would we use:
n  binary heap

n  max/min in log time
n  binomial heap

n  max/min in log time
n  supports the union operation

n  BST
n  search in log time

n  B-Tree
n  search on disk in log disk accesses

+
Recurrences: three approaches

n Substitution method: when you have a good guess
of the solution, prove that it’s correct

n Recursion-tree method: If you don’t have a good
guess, the recursion tree can help. Then solve with
substitution method.

n Master method: Provides solutions for recurrences
of the form:

)()/()(nfbnaTnT +=

+
Substitution method

n  Guess the form of the solution

n  Then prove it’s correct by induction

n  Halves the input then constant amount of work

n  Similar to binary search:

dnTnT +=)2/()(

Guess: O(log2 n)

3/20/12	

4	

+
Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction!
-  Assume it’s true for smaller T(k)
-  prove that it’s then true for current T(n)

+

n Assume T(k) = O(log2 k) for all k < n

n Show that T(n) = O(log2 n)

n From our assumption, T(n/2) = O(log2 n):

n From the definition of O: T(n/2) ≤ c log2(n/2)

dnTnT +=)2/()(

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

+
n To prove that T(n) = O(log2 n) we need to identify the

appropriate constants:

dnTnT +=)2/()(

dnTnT +=)2/()(
dnc +≤)2/(log2

! c log2 n" c log2 2+ d

! c log2 n" c+ d

nc 2log≤

if c ≥ d

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n

residual

+

n  Guess the solution?
n  At each iteration, does a linear amount of work (i.e. iterate over the data)

and reduces the size by one at each step

n  O(n2)

n Assume T(k) = O(k2) for all k < n
n again, this implies that T(n-1) ≤ c(n-1)2

n Show that T(n) = O(n2), i.e. T(n) ≤ cn2

nnTnT +−=)1()(

3/20/12	

5	

+ nnTnT +−=)1()(
nnc +−≤ 2)1(

nnnc ++−=)12(2

nccncn ++−= 22

2cn≤

if

residual

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+−)12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for
any c ≥1 for n ≥1

+ Changing variables

n  Guesses?

n  We can do a variable change: let m = log2 n
(or n = 2m)

n  Now, let S(m)=T(2m)

nnTnT log)(2)(+=

mTT mm +=)2(2)2(2/

mmSmS +=)2/(2)(

+

n  Guess?

S(m) = 2S(m / 2)+m

)log()(mmOmS =

)log()()2()(mmOmSTnT m ===

)loglog(log)(nnOnT =

substituting m=log n

Changing variables +
Recurrences

dnTnT +=)3/(2)(

nnTnT log)1()(+−=

nnTnT +=)7/(7)(

3)2/(8)(nnTnT +=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

3/20/12	

6	

+
Binary Search Trees

n BST – A binary tree where a parent’s value is greater than all
values in the left subtree and less than or equal to all the
values in the right subtree

n  the left and right children are also binary trees

n Why not?

n Can be implemented with with pointers or an array

leftTree(i)< i ! rightTree(i)

leftTree(i) ! i ! rightTree(i)

+
Example

12

8

 5 9 20

14

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5

3/20/12	

7	

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5, 8

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5, 8, 9

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12

+Visiting all nodes

n  What’s happening?

12

8

 5 9 20

14

5, 8, 9, 12

3/20/12	

8	

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14

+Visiting all nodes

n  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14, 20

+
Visiting all nodes in order

+
Visiting all nodes in order

any operation

3/20/12	

9	

+Is it correct?

n  Does it print out all of the nodes in sorted order?

)()(irightiileft ≤<

+Running time?

n  How much work is done for each call?

n  How many calls?

n Θ(n)

+
What about?

+Preorder traversal

12

8

 5 9 20

14

12, 8, 5, 9, 14, 20

3/20/12	

10	

+
What about?

+Postorder traversal

12

8

 5 9 20

14

5, 9, 8, 20, 14, 12

+
Binomial Tree

Bk-1

Bk-1

B0 Bk

B0 B1 B2 B3 B4

Bk is a binomial tree Bk-1 with
the addition of a left child with
another binomial tree Bk-1

+
Binomial Tree

B0 B1 B2 B3 B4

Height?

H(Bo) = 1
H(Bk) = 1 + H(Bk-1) = k

B1

Bk-1

Bk

B2

B0

3/20/12	

11	

+
Binomial Tree

B0 B1 B2 B3 B4

What are the children of
the root?

k binomial trees:
Bk-1, Bk-2, …, B0

B1

Bk-1

Bk

B2

B0

+
Binomial Heap

n Binomial heap Vuillemin, 1978.

Sequence of binomial trees that satisfy binomial heap property:

n  each tree is min-heap ordered

n  top level: full or empty binomial tree of order k

n  which are empty or full is based on the number of elements

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

+
Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

How many heaps?

O(log n) – binary number representation

+
Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Where is the max/min?

Must be one of the
roots of the heaps

3/20/12	

12	

+
Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Runtime of max/min?

O(log n)

+
Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Height?
floor(log2 n)

 - largest tree = Blog n
 - height of that tree is log n

+
Binomial Heap: Union

n How can we merge two binomial tree heaps of the same size
(2k)?

n  connect roots of H' and H''

n  choose smaller key to be root of H

H''

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

H'

Runtime? O(1)

+
Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

33 28

15

25

7 12

What if they’re not they’re not the
simple heaps of size 2k?

3/20/12	

13	

+
Binomial Heap: Union

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

Go through each tree size starting at 0 and merge as we go

+
Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

+
Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

18

12

+

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

25

37 7

3

18

12

18

12

3/20/12	

14	

+

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

12

+

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

18

12

+

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

+

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

18

12

+
Binomial Heap: Union
Analogous to binary addition

n Running time?
n Proportional to number of trees in root lists 2 O(log2 N)
n O(log N)

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

3/20/12	

15	

+

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min/Max
We can find the min/max in O(log n).
How can we extract it?

Hint: Bk consists of
binomial trees:
Bk-1, Bk-2, …, B0

+

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min
n  Delete node with minimum key in binomial heap H.

n  Find root x with min key in root list of H, and delete

n  H' ← broken binomial trees

n  H ← Union(H', H)

+

3

37

6 18

55

x 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Decrease Key
n  Just call Decrease-Key/Increase-Key of Heap

n  Suppose x is in binomial tree Bk

n  Bubble node x up the tree if x is too small

n  Running time: O(log N)

n  Proportional to depth of node x

depth = 3

+
Binomial Heap: Delete

n Delete node x in binomial heap H
n Decrease key of x to -∞
n Delete min

n Running time: O(log N)

3/20/12	

16	

+
Binomial Heap: Insert

n Insert a new node x into binomial heap H

n  H' ← MakeHeap(x)

n  H ← Union(H', H)

n Running time. O(log N)
3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

x

H'

+
Heaps

