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+

David Kauchak 
cs312 
Review 

+
Midterm 

n  Will be posted online this afternoon 

n  You will have 2 hours to take it 
n  watch your time! 
n  if you get stuck on a problem, move on and come back 

n  Must take it by Friday at 6pm 

n  You may use: 
n  your book 
n  your notes 
n  the class notes 
n  ONLY these things 

n  Do NOT discuss it with anyone until after Friday at 6pm 

+ Midterm 

n General 
n what is an algorithm 
n algorithm properties 
n pseudocode 
n proving correctness 
n run time analysis 
n memory analysis 

+ Midterm 

n Big O 
n proving bounds 
n  ranking/ordering of functions 

n Amortized analysis 

n Recurrences 
n  solving recurrences 

n  substitution method 
n  recursion-tree 
n master method 
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+ Midterm 

n Sorting 
n  insertion sort 
n merge sort 
n quick sort 

n partition function 
n bubble sort 
n heap sort 

+ Midterm 

n Divide and conquer 
n  divide up the data (often in half) 
n  recurse 
n  possibly do some work to combine the answer 

n Calculating order statistics/medians 

n Basic data structures 
n  set operations 
n  array 
n  linked lists 
n  stacks 
n  queues 

+ Midterm 

n Heaps 
n binary heaps 
n binomial heaps 

n Search trees 
n  BSTs 
n  B-trees 

+
Midterm 

n  Other things to know: 
n  run-times (you shouldn’t have to look all of them up, though I don’t 

expect you to memorize them either) 

n  when to use an algorithm 

n  proof techniques 

n  look again an proofs by induction 
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+ Data structures so far 

n When would we use: 
n  Arrays 

n  get and set particular indices in constant time 
n  linked list 

n  insert and delete in constant time 
n  stack 

n  LIFO 
n  queue 

n  FIFO 

+ Data structures so far 

n When would we use: 
n  binary heap 

n  max/min in log time 
n  binomial heap 

n  max/min in log time 
n  supports the union operation 

n  BST 
n  search in log time 

n  B-Tree 
n  search on disk in log disk accesses 

+
Recurrences: three approaches 

n Substitution method: when you have a good guess 
of the solution, prove that it’s correct 

n Recursion-tree method: If you don’t have a good 
guess, the recursion tree can help.  Then solve with 
substitution method. 

n Master method: Provides solutions for recurrences 
of the form: 

)()/()( nfbnaTnT +=

+
Substitution method 

n  Guess the form of the solution 

n  Then prove it’s correct by induction 

 

 

 

n  Halves the input then constant amount of work 

n  Similar to binary search: 

dnTnT += )2/()(

Guess: O(log2 n) 
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+
Proof? 

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction! 
-  Assume it’s true for smaller T(k) 
-  prove that it’s then true for current T(n) 

+

n Assume T(k) = O(log2 k)  for all k < n 

n Show that T(n) = O(log2 n) 

n From our assumption, T(n/2) = O(log2 n): 

n From the definition of O: T(n/2) ≤ c log2(n/2) 

dnTnT += )2/()(

⎭
⎬
⎫

⎩
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≥≤≤
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0 allfor  )()(0
such that  and  constants positive exists there
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+
n To prove that T(n) = O(log2 n) we need to identify the 

appropriate constants: 

dnTnT += )2/()(

dnTnT += )2/()(
dnc +≤ )2/(log2

! c log2 n" c log2 2+ d

! c log2 n" c+ d

nc 2log≤

if c ≥ d 

⎭
⎬
⎫
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⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n 

residual 

+

n  Guess the solution? 
n  At each iteration, does a linear amount of work (i.e. iterate over the data) 

and reduces the size by one at each step 

n  O(n2) 

n Assume T(k) = O(k2)  for all k < n 
n again, this implies that T(n-1) ≤ c(n-1)2 

n Show that T(n) = O(n2), i.e. T(n) ≤ cn2 

nnTnT +−= )1()(
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+ nnTnT +−= )1()(
nnc +−≤ 2)1(

nnnc ++−= )12( 2

nccncn ++−= 22

2cn≤

if 

residual 

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+− )12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for 
any c ≥1 for n ≥1 

+ Changing variables 

n  Guesses? 

n  We can do a variable change:  let m = log2 n  
(or n = 2m) 

n  Now, let S(m)=T(2m) 

nnTnT log)(2)( +=

mTT mm += )2(2)2( 2/

mmSmS += )2/(2)(

+

n  Guess? 

S(m) = 2S(m / 2)+m

)log()( mmOmS =

)log()()2()( mmOmSTnT m ===

)loglog(log)( nnOnT =

substituting m=log n 

Changing variables +
Recurrences 

dnTnT += )3/(2)(

nnTnT log)1()( +−=

nnTnT += )7/(7)(

3)2/(8)( nnTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε
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+
Binary Search Trees 

n BST – A binary tree where a parent’s value is greater than all 
values in the left subtree and less than or equal to all the 
values in the right subtree 

n  the left and right children are also binary trees 

n Why not? 

n Can be implemented with with pointers or an array 

leftTree(i)< i ! rightTree(i)

leftTree(i) ! i ! rightTree(i)

+
Example 

12 

8 

 5 9 20 

14 

+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5 
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+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5, 8 

+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5, 8, 9 

+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5, 8, 9, 12 

+Visiting all nodes 

n  What’s happening? 

12 

8 

 5 9 20 

14 

5, 8, 9, 12 
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+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5, 8, 9, 12, 14 

+Visiting all nodes 

n  In sorted order 

12 

8 

 5 9 20 

14 

5, 8, 9, 12, 14, 20 

+
Visiting all nodes in order 

+
Visiting all nodes in order 

any operation 
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+Is it correct? 

n  Does it print out all of the nodes in sorted order? 

)()( irightiileft ≤<

+Running time? 

 

n  How much work is done for each call? 

n  How many calls? 

n Θ(n) 

+
What about? 

+Preorder traversal 

12 

8 

 5 9 20 

14 

12, 8, 5, 9, 14, 20 
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+
What about? 

+Postorder traversal 

12 

8 

 5 9 20 

14 

5, 9, 8, 20, 14, 12 

+
Binomial Tree 

Bk-1 

Bk-1 

B0 Bk 

B0 B1 B2 B3 B4 

Bk is a binomial tree Bk-1 with 
the addition of a left child with 
another binomial tree Bk-1 

+
Binomial Tree 

B0 B1 B2 B3 B4 

Height? 

H(Bo) = 1 
H(Bk) = 1 + H(Bk-1) = k 

B1 

Bk-1 

Bk 

B2 

B0 
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+
Binomial Tree 

B0 B1 B2 B3 B4 

What are the children of 
the root? 

k binomial trees: 
Bk-1, Bk-2, …, B0 

B1 

Bk-1 

Bk 

B2 

B0 

+
Binomial Heap 

n Binomial heap  Vuillemin, 1978. 

Sequence of binomial trees that satisfy binomial heap property: 

n  each tree is min-heap ordered 

n  top level: full or empty binomial tree of order k 

n  which are empty or full is based on the number of elements 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

+
Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

How many heaps? 

O(log n) – binary number representation 

+
Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Where is the max/min? 

Must be one of the 
roots of the heaps 
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+
Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Runtime of max/min? 

O(log n) 

+
Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Height? 
floor(log2 n) 

 - largest tree = Blog n 
 - height of that tree is log n 

+
Binomial Heap:  Union 

n How can we merge two binomial tree heaps of the same size 
(2k)? 

n  connect roots of H' and H'' 

n  choose smaller key to be root of H  

H'' 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

H' 

Runtime? O(1) 

+
Binomial Heap:  Union 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

33 28 

15 

25 

7 12 

What if they’re not they’re not the 
simple heaps of size 2k? 
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+
Binomial Heap:  Union 

0 0 1 1 

1 0 0 1 + 

0 1 1 1 

1 1 

1 
1 
0 

1 

19 + 7 = 26 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

41 

33 28 

15 

25 

7 12 

+ 

Go through each tree size starting at 0 and merge as we go 

+
Binomial Heap:  Union 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

41 

33 28 

15 

25 

7 12 

+ 

+
Binomial Heap:  Union 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 

41 

33 28 

15 

25 

7 

+ 

12 

18 

18 

12 

+

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 

41 

33 28 

15 

25 

7 

+ 

12 

18 

25 

37 7 

3 

18 

12 

18 

12 
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+

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 

41 

33 28 

15 

25 

7 

12 

+ 

18 

25 

37 7 

3 

41 

28 33 25 

37 15 7 

3 

18 

12 

18 

12 

+

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 

41 

33 28 

15 

25 

7 

+ 

18 

12 

41 

28 33 25 

37 15 7 

3 

12 

18 

25 

37 7 

3 

41 

28 33 25 

37 15 7 

3 

18 

12 

+

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 

41 

33 28 

15 

25 

7 

+ 

18 

12 

41 

28 33 25 

37 15 7 

3 

12 

18 

25 

37 7 

3 

41 

28 33 25 

37 15 7 

3 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

6 

18 

12 

+
Binomial Heap:  Union 
Analogous to binary addition 

n Running time? 
n Proportional to number of trees in root lists 2 O(log2 N) 
n O(log N) 

0 0 1 1 

1 0 0 1 + 

0 1 1 1 

1 1 

1 
1 
0 

1 

19 + 7 = 26 
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+

3 

37 

6 18 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

H 

Binomial Heap:  Delete Min/Max 
We can find the min/max in O(log n). 
How can we extract it? 

Hint: Bk consists of 
binomial trees: 
Bk-1, Bk-2, …, B0 

+

3 

37 

6 18 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

H 

Binomial Heap:  Delete Min 
n  Delete node with minimum key in binomial heap H. 

n  Find root x with min key in root list of H, and delete 

n  H' ←  broken binomial trees 

n  H  ←  Union(H', H) 

+

3 

37 

6 18 

55 

x 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

H 

Binomial Heap:  Decrease Key 
n  Just call Decrease-Key/Increase-Key of Heap 

n  Suppose x is in binomial tree Bk 

n  Bubble node x up the tree if x is too small 

n  Running time:  O(log N) 

n  Proportional to depth of node x 

depth = 3 

+
Binomial Heap:  Delete 

n Delete node x in binomial heap H 
n Decrease key of x to -∞ 
n Delete min 

n Running time:  O(log N) 
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+
Binomial Heap:  Insert 

n Insert a new node x into binomial heap H 

n  H' ←  MakeHeap(x) 

n  H  ←  Union(H', H) 

n Running time.  O(log N) 
3 

37 

6 18 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

H 

x 

H' 

+
Heaps 


