

Admin

Assignment 4

Assignment 3 back soon

If you need assignment feedback...

Real world multiclass classification

Decision Tree learning

Base cases:
If all data belong to the same class, pick that label
2. If all the data have the same feature values, pick majority label
3. If we're out of features to examine, pick majority label
4. If the we don't have any data left, pick majority label of parent
5. If some other stopping criteria exists to avoid overfitting, pick majority label

Otherwise:
calculate the "score" for each feature if we used it to split the data pick the feature with the highest score, partition the data based on that data value and call recursively

No algorithmic changes!

Perceptron learning

OVA: classify

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick one of the ones in conflict

\square Otherwise:

- pick the most confident positive
- if none vote positive, pick least confident negative

VVA: classify, perceptron

Classify:
- If classifier doesn't provide confidence (this is rare) and
there is ambiguity, pick majority in conflict
- Otherwise:
■ pick the most confident positive
■ if none vote positive, pick least confident negative
How do we calculate this for the perceptron?

Approach 2: All VS. all (AVA)
Training:
For each pair of labels, train a classifier to distinguish between them
for $i=1$ to number of labels:
for $k=$ i+ 1 to number of labels:
train a classifier to distinguish between label ${ }_{i}$ and label l_{k} :

- create a dataset with all examples with label labeled positive
and all examples with label l_{k} labeled negative
- train classifier on this subset of the data

OVA: classify, perceptron

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
- Otherwise:
- pick the most confident positive
- if none vote positive, pick least confident negative

$$
\text { prediction }=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

Distance from the hyperplane

AVA classify

To classify example e , classify with each classifier f_{ik}

We have a few options to choose the final class:
Take a majority vote
Take a weighted vote based on confidence $y=f_{i k}(e)$
score $_{\mathrm{i}}+=y$ How does this work? score $_{k}=\mathbf{~ y}$

Here we're assuming that y encompasses both the prediction $(+1,-1)$ and the confidence, i.e. $y=$ prediction * confidence.

AVA classify

Take a weighted vote based on confidence

$$
y=f_{i k}(e)
$$

score $_{i}+=y$
score $_{\mathrm{k}}=\mathrm{y}$
If y is positive, classifier thought it was of type i :

- raise the score for i
- lower the score for k
if y is negative, classifier thought it was of type k :
- lower the score for i
- raise the score for k

OVA vs. AVA
Train/classify runtime?
Error? Assume each binary classifier makes an error
with probability ε

OVA vs. AVA

Train time:
AVA learns more classifiers, however, they're trained on much smaller data this tends to make it faster if the labels are equally balanced

Test time:
AVA has more classifiers

Error (see the book for more justification):
AVA trains on more balanced data sets
AVA tests with more classifiers and therefore has more chances for errors

- Theoretically:
-- OVA: ε (number of labels -1)
-- AVA: 2ε (number of labels -1)

Multiclass summary

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:
\square DT and k-NN work reasonably well
\square We'll see a few more in the coming weeks that will often work better

Macroaveraging vs. microaveraging
microaveraging: average over examples (this is the "normal" way of calculating)
macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

What effect does this have?
Why include it?

Macroaveraging vs. microaveraging

| | label prediction
 apple orange | microaveraging: 4/6
 macroaveraging:
 apple $=1 / 2$ |
| :--- | :--- | :--- | :--- |
| orange $=1 / 1$ | | |

Confusion matrix

entry (i, j) represents the number of examples with label i that were predicted to have label j
another way to understand both the data and the classifier

	Classic	Country	Disco	Hiphop	Jazz	Rock
Classic	86	2	0	4	18	1
Country	1	57	5	1	12	13
Disco	0	6	55	4	0	5
Hiphop	0	15	28	90	4	18
Jazz	7	1	0	0	37	12
Rock	6	19	11	0	27	48

Multilabel vs. multiclass classification

Multiclass vs. multilabel

Multiclass: each example has one label and exactly one label

Multilabel: each example has zero or more labels. Also called annotation

Ranking problems
Suggest a simpler word for the word below:
vital

Suggest a simpler word

Suggest a simpler word for the word below: acquired

Black box approach to ranking

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem

Can we solve our ranking problem with this?

Predict better vs. worse

Train a classifier to decide if the first input is better than second: - Consider all possible pairings of the examples in a ranking - Label as positive if the first example is higher ranked, negative otherwise

ranking 1	new examples		binary label
	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	$f_{1}, f_{2}, \ldots, f_{n}$	+1
	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	$f_{1}, f_{2}, \ldots, f_{n}$	+1
$\frac{f_{1}, f_{2}, \ldots, f_{n}}{f_{1}, f_{2}, \ldots, f_{n}}$	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{n}$	$f_{1}, f_{2}, \ldots, f_{n}$	-1
$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{n}$	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	$f_{1}, f_{2}, \ldots, f_{n}$	+1
	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	$f_{1}, f_{2}, \ldots, f_{n}$	-1
	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	$f_{1}, f_{2}, \ldots, f_{n}$	-1

Predict better vs. worse

\qquad

How can we do this?
We want features that compare the two examples.

Combined feature vector
Many approaches! Will depend on domain and classifier
Two common approaches:
1. difference:
$\qquad f_{i}^{\prime}=a_{i}-b_{i}$
2. greater than/less than:
$\qquad f_{i}^{\prime}=\left\{\begin{array}{cc\|}1 & \text { if } a_{i}>b_{i} \\ 0 & \text { otherwise }\end{array}\right.$

Testing						

An improvement?			
ranking 1	new examples		binary label
	$f_{1}, f_{2}, \ldots, f_{n}$	$f_{1}, f_{2}, \ldots, f_{n}$	+1
f	$f_{1}, f_{2}, \ldots, f_{n}$	$\mathrm{f}_{1}, f_{2}, \ldots, f_{n}$	+1
${ }^{2}$	$f_{1}, f_{2}, \ldots, f_{0}$	$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{0}$	-1
$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{0}$	$f_{1}, f_{2}, \ldots, f_{n}$	$f_{1}, f_{2}, \ldots, f_{n}$	+1
	$f_{1}, f_{2}, \ldots, f_{n}$	$f_{1}, f_{2}, \ldots, f_{0}$	-1
	$f_{1}, f_{2}, \ldots, f_{n}$	$f_{1}, f_{2}, \ldots, f_{n}$	-1
Are these two examples the same?			

Testing
If the classifier outputs a confidence, then we've learned
a distance measure between examples
During testing we want to rank the examples based on
the learned distance measure
Ideas?

Testing

If the classifier outputs a confidence, then we've learned a distance measure between examples

During testing we want to rank the examples based on the learned distance measure

Sort the examples and use the output of the binary classifier as the similarity between examples!

Ranking evaluation	
ranking	

Idea 1: accuracy			
ranking		prediction	
$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	1	1	
$f_{1}, f_{2}, \ldots, f_{n}$	2	3	$1 / 5=0.2$
$\mathrm{f}_{1}, f_{2}, \ldots, f_{n}$	3	2	
$f_{1}, f_{2}, \ldots, f_{n}$	4	5	
$f_{1}, f_{2}, \ldots, f_{n}$	5	4	
Any problems with this?			

Doesn't capture "near" correct			
ranking		prediction	prediction
$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, f_{n}$	1	1	1
${ }^{f_{1}, f_{2}, \ldots, f_{n}}$	2	3	5
$\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$	3	2	4
$f_{1}, f_{2}, \ldots, f_{n}$	4	5	3
$f_{1}, f_{2}, \ldots, f_{n}$	5	4	2
$1 / 5=0.2$			

Idea 2: correlation
 Look at the correlation between the ranking and the prediction

