
9/20/16	

1	

IMBALANCED DATA

David Kauchak
CS 158 – Fall 2016

Admin

Assignment 3:
 - how did it go?
 - do the experiments help?

Assignment 4

Exam schedule

Phishing

9/20/16	

2	

Setup

1.  for 1 hour, google collects 1M e-mails randomly
2.  they pay people to label them as “phishing” or

“not-phishing”
3.  they give the data to you to learn to classify

e-mails as phishing or not
4.  you, having taken ML, try out a few of your

favorite classifiers
5.  you achieve an accuracy of 99.997%

Should you be happy?

Imbalanced data

la
be

le
d

da
ta

99.997%
not-phishing

0.003%
phishing

The phishing problem is what is called an
imbalanced data problem

There is a large discrepancy between the
number of examples with each class label

e.g. for 1M examples only ~30 would be
phishing e-mails

What is probably going on with our classifier?

Imbalanced data

always
predict

not-phishing
99.997% accuracy

Why does the classifier learn this?

Imbalanced data

Many classifiers are designed to optimize error/accuracy

This tends to bias performance towards the majority class

Anytime there is an imbalance in the data this can happen

It is particularly pronounced, though, when the imbalance is
more pronounced

9/20/16	

3	

Imbalanced problem domains

Besides phishing (and spam) what are some other
imbalanced problems domains?

Imbalanced problem domains

Medical diagnosis

Predicting faults/failures (e.g. hard-drive failures,
mechanical failures, etc.)

Predicting rare events (e.g. earthquakes)

Detecting fraud (credit card transactions, internet
traffic)

Imbalanced data: current classifiers

la
be

le
d

da
ta

99.997%
not-phishing

0.003%
phishing

How will our current classifiers do on this problem?

Imbalanced data: current classifiers

All will do fine if the data can be easily separated/distinguished

Decision trees:

!  explicitly minimizes training error
!  when pruning/stopping early: pick “majority” label at leaves
!  tend to do very poor at imbalanced problems

k-NN:
!  even for small k, majority class will tend to overwhelm the vote

perceptron:
!  can be reasonable since only updates when a mistake is made
!  can take a long time to learn

9/20/16	

4	

Part of the problem: evaluation

Accuracy is not the right measure of classifier
performance in these domains

Other ideas for evaluation measures?

positive examples in test set

“identification” tasks

View the task as trying to find/identify “positive” examples (i.e.
the rare events)

Precision: proportion of test examples predicted as positive
that are correct

Recall: proportion of test examples labeled as positive that
are correct

correctly predicted as positive

examples predicted as positive
correctly predicted as positive

positive examples in test set

“identification” tasks

Precision: proportion of test examples predicted as positive that are correct

Recall: proportion of test examples labeled as positive that are correct

correctly predicted as positive

examples predicted as positive

correctly predicted as positive

predicted
positive

precision all positive recall
correctly
predicted positive

precision and recall

0

0

1

1

0

1

0

data label predicted

0

1

0

1

1

1

0

positive examples in test set

correctly predicted as positive

examples predicted as positive

correctly predicted as positive
precision =

recall =

9/20/16	

5	

precision and recall

0

0

1

1

0

1

0

data label predicted

0

1

0

1

1

1

0

positive examples in test set

correctly predicted as positive

examples predicted as positive

correctly predicted as positive
precision =

recall =

precision =
2

4

recall =
2

3

precision and recall

0

0

1

1

0

1

0

data label predicted

0

1

0

1

1

1

0

positive examples in test set

correctly predicted as positive

examples predicted as positive

correctly predicted as positive
precision =

recall =

Why do we have both measures?
How can we maximize precision?
How can we maximize recall?

Maximizing precision

0

0

1

1

0

1

0

data label predicted

0

0

0

0

0

0

0

positive examples in test set

correctly predicted as positive

examples predicted as positive

correctly predicted as positive
precision =

recall =

Don’t predict anything as positive!

Maximizing recall

0

0

1

1

0

1

0

data label predicted

1

1

1

1

1

1

1

positive examples in test set

correctly predicted as positive

examples predicted as positive

correctly predicted as positive
precision =

recall =

Predict everything as positive!

9/20/16	

6	

precision vs. recall

Often there is a tradeoff between precision and
recall

increasing one, tends to decrease the other

For our algorithms, how might we increase/decrease
precision/recall?

precision/recall tradeoff

0

0

1

1

0

1

0

data label predicted confidence

0

1

0

1

1

1

0

0.75

0.60

0.20

0.80

0.50

0.55

0.90

-  For many classifiers we can
get some notion of the
prediction confidence

-  Only predict positive if the
confidence is above a given
threshold

-  By varying this threshold, we
can vary precision and recall

precision/recall tradeoff

1

0

1

0

1

0

0

data label predicted confidence

1

1

1

1

0

0

0

0.80

0.60

0.55

0.50

0.20

0.75

0.90

put most confident positive
predictions at top

put most confident negative
predictions at bottom

calculate precision/recall at
each break point/threshold

classify everything above
threshold as positive and
everything else negative

precision/recall tradeoff

1

0

1

0

1

0

0

data label predicted confidence

1

1

1

1

0

0

0

0.80

0.60

0.55

0.50

0.20

0.75

0.90

precision recall

1/1 = 1.0 1/3 = 0.33

9/20/16	

7	

precision/recall tradeoff

1

0

1

0

1

0

0

data label predicted confidence

1

1

1

1

0

0

0

0.80

0.60

0.55

0.50

0.20

0.75

0.90

precision recall

1/2 = 0.5 1/3 = 0.33

precision/recall tradeoff

1

0

1

0

1

0

0

data label predicted confidence

1

1

1

1

0

0

0

0.80

0.60

0.55

0.50

0.20

0.75

0.90

precision recall

2/3 = 0.67 2/3 = 0.67

precision/recall tradeoff

1

0

1

0

1

0

0

data label predicted confidence

1

1

1

1

0

0

0

0.80

0.60

0.55

0.50

0.20

0.75

0.90

precision recall

1.0 0.33

0.5 0.33

0.66 0.66

0.5 0.66

0.5 1.0

0.5 1.0

0.5 1.0

precision-recall curve

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

P
re
ci
si
on

9/20/16	

8	

Which is system is better?

recall recall

pr
ec

isi
on

pr
ec

isi
on

How can we quantify this?

Area under the curve

Area under the curve (PR-AUC) is one metric that
encapsulates both precision and recall

calculate the precision/recall values for all thresholding of
the test set (like we did before)

then calculate the area under the curve

can also be calculated as the average precision for all the
recall points (and many other similar approximations)

Area under the curve?

recall recall

pr
ec

isi
on

pr
ec

isi
on

Any concerns/problems?

Area under the curve?

recall

pr
ec

isi
on

For real use, often only
interested in performance in
a particular range

recall

pr
ec

isi
on

Eventually, need to deploy.
How do we decide what
threshold to use?

?

9/20/16	

9	

Area under the curve?

recall

pr
ec

isi
on

recall

pr
ec

isi
on

?

Ideas? We’d like a compromise between precision and recall

A combined measure: F

Combined measure that assesses precision/recall
tradeoff is F measure (weighted harmonic mean):

RP
PR

RP

F
+

+
=

−+
= 2

2)1(
1)1(1

1
β
β

αα

where α(orβ) is a parameter that trades biases more
towards precision or recall

α =
1

1+β 2

F1-measure

Most common α=0.5: equal balance/weighting
between precision and recall:

RP
PR

RP

F
+

+
=

−+
= 2

2)1(
1)1(1

1
β
β

αα

F1= 1

0.5 1
P
+ 0.5 1

R

=
2PR
P + R

A combined measure: F

Combined measure that assesses precision/recall
tradeoff is F measure (weighted harmonic mean):

RP
PR

RP

F
+

+
=

−+
= 2

2)1(
1)1(1

1
β
β

αα

Why harmonic mean?
Why not normal mean (i.e. average)?

9/20/16	

10	

F1 and other averages

Combined Measures

0

20

40

60

80

100

0 20 40 60 80 100

Precision (Recall fixed at 70%)

Minimum

Maximum

Arithmetic

Geometric

Harmonic

Harmonic mean encourages precision/recall values that are similar!

Evaluation summarized

Accuracy is often NOT an appropriate evaluation
metric for imbalanced data problems

precision/recall capture different characteristics of
our classifier

PR-AUC and F1 can be used as a single metric to
compare algorithm variations (and to tune
hyperparameters)

Phishing – imbalanced data Training classifiers?

precision/recall capture different characteristics of
our classifier

PR-AUC and F1 can be used as a single metric to
compare algorithm variations (and to tune
hyperparameters)

Can we train our classifiers to maximize this
(instead of accuracy/error)?

9/20/16	

11	

Black box approach

Abstraction: we have a generic binary classifier, how
can we use it to solve our new problem

binary
classifier

+1

-1

optionally: also output
a confidence/score

Can we do some pre-processing/post-processing of our
data to allow us to still use our binary classifiers?

Idea 1: subsampling

la
be

le
d

da
ta

99.997%
not-phishing

50%
phishing

Create a new training dataset by:
-  including all k “positive” examples
-  randomly picking k “negative”

examples

50%
not-phishing

0.003%
phishing

pros/cons?

Subsampling

Pros:
! Easy to implement
! Training becomes much more efficient (smaller training

set)
! For some domains, can work very well

Cons:
!  Throwing away a lot of data/information

Idea 2: oversampling

la
be

le
d

da
ta

99.997%
not-phishing

50%
phishing

Create a new training data set by:
-  include all m “negative” examples
-  include m “positive examples:

-  repeat each example a fixed
number of times, or

-  sample with replacement
50%
not-phishing

0.003%
phishing

pros/cons?

9/20/16	

12	

oversampling

Pros:
! Easy to implement
! Utilizes all of the training data
! Tends to perform well in a broader set of circumstances

than subsampling

Cons:
!  Computationally expensive to train classifier

Idea 2b: weighted examples

la
be

le
d

da
ta

99.997%
not-phishing

Add costs/weights to the training set

“negative” examples get weight 1

“positive” examples get a much larger
weight

change learning algorithm to optimize
weighted training error

0.003%
phishing pros/cons?

cost/weights

1

99.997/0.003 =
 33332

weighted examples

Pros:
! Achieves the effect of oversampling without the

computational cost
! Utilizes all of the training data
! Tends to perform well in a broader set circumstances

Cons:
!  Requires a classifier that can deal with weights

Of our three classifiers, can all be modified to handle weights?

Building decision trees with weights

Otherwise:
-  calculate the “score” for each feature if we used it to split the data

-  pick the feature with the highest score, partition the data based on
that data value and call recursively

We used the training error to decide on which feature to choose:
use the weighted training error

In general, any time we do a count, use the weighted count (e.g. in
calculating the majority label at a leaf)

9/20/16	

13	

Idea 3: optimize a different error metric

Train classifiers that try and optimize F1 measure or
AUC or …

or, come up with another learning algorithm designed
specifically for imbalanced problems

pros/cons?

Idea 3: optimize a different error metric

Train classifiers that try and optimize F1 measure or AUC or …

Challenge: not all classifiers are amenable to this

or, come up with another learning algorithm designed
specifically for imbalanced problems

Don’t want to reinvent the wheel!

That said, there are a number of approaches that have been
developed to specifically handle imbalanced problems

