

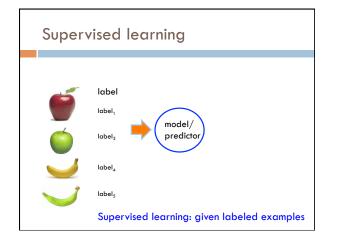
Administrative

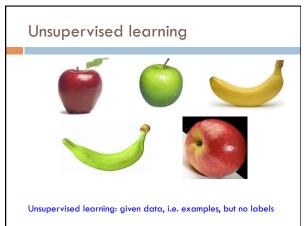
Final project

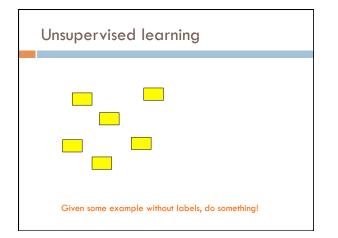
- Nice work forming groups ⁽²⁾
- Status report due tomorrow (Wednesday)
- In-class presentation next Tuesday

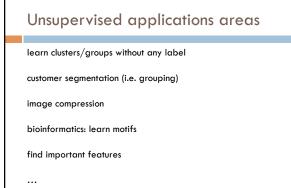
Midterm

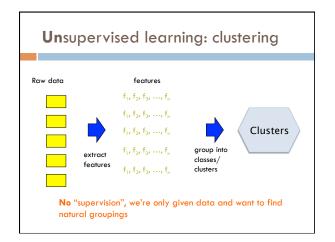
Grading

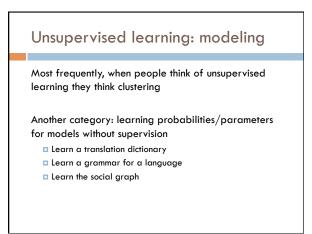






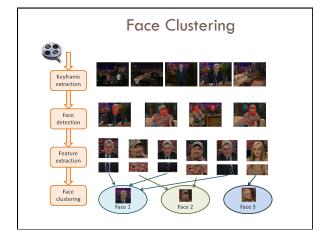


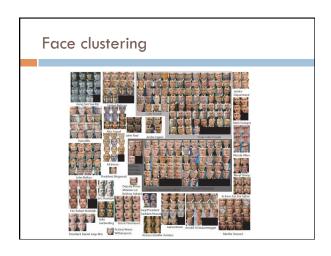




Clustering Clustering: the process of grouping a set of objects into classes of similar objects Applications?

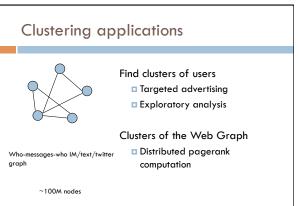


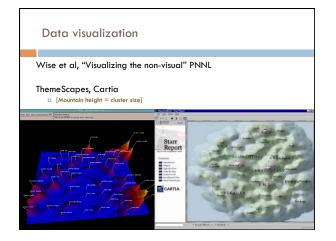


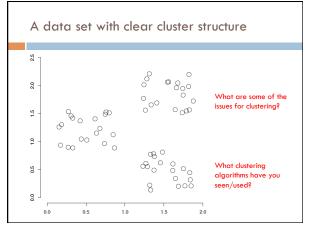


-	
Sea	rch result clustering
	apples
	Web Images Maps Shopping More - Search tools
	10 personal results. 88,900,000 other results.
	Apple www.apple.com/ Apple designs and variable The and Turuse, Mac taptop and desktop computers, the 05 X openting system, and the revolutionary iPhone and iPad. Apple Bione - Pad - iPhone - Apple - Support 10,272 project = This
	Apple - IPad www.apple.com/pad/ IPad is a majoral whotow where nothing comes between you and what you You visited this page.
	Apple - Vilkipedia, the thre encyclopedia en.wikipedia crybinki/apple The apple is the promotos fluit of the apple then, species Makus domestica in the new family (Reasceae), it is one of the most widely collisited then fulls, and Apple fine - Lind Explan cultures - Apple International Section 2014
	Directory of apple varieties statistica with A www.orangepippin.com/apples 30- Intern = For apple embasists - statistication rates, state, and fash Accense apple - Reambles Activation in tasts, spearamous, state, and fash Accense apple - Reambles Activation in tasts, spearamous, state, and fash









Issues for clustering

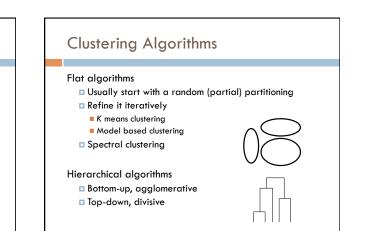
Representation for clustering

- How do we represent an example
 - features, etc.
- Similarity/distance between examples

Flat clustering or hierarchical

Number of clusters

- Fixed a priori
- Data driven?



Hard vs. soft clustering

Hard clustering: Each example belongs to exactly one cluster

Soft clustering: An example can belong to more than one cluster (probabilistic)

Makes more sense for applications like creating browsable hierarchies
 You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

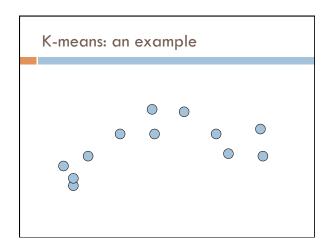
K-means

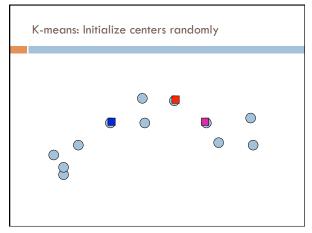
Most well-known and popular clustering algorithm:

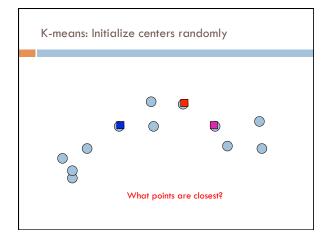
Start with some initial cluster centers

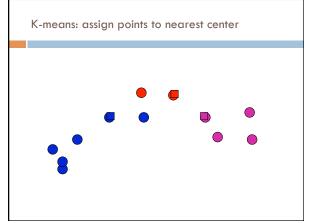
lterate:

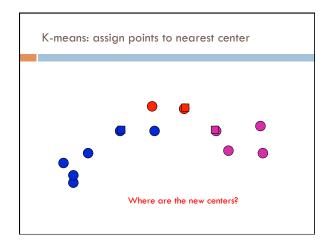
- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

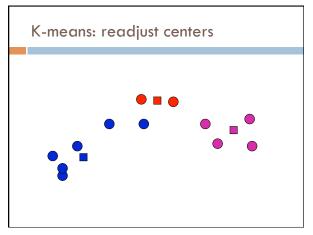




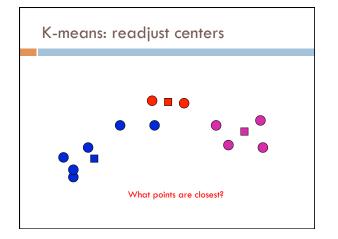


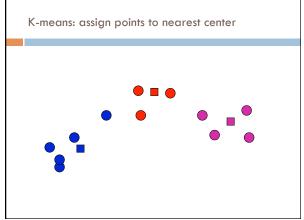


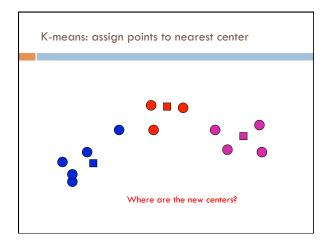


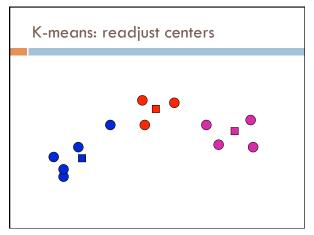


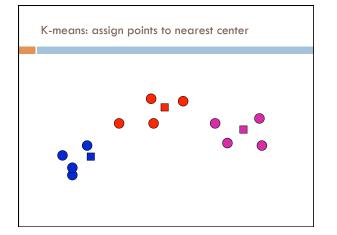
7

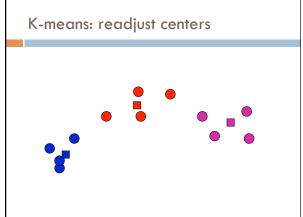


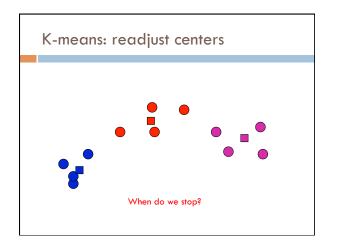


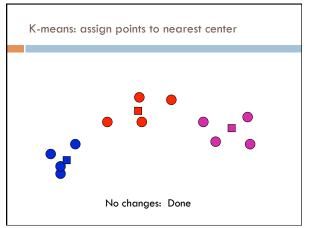


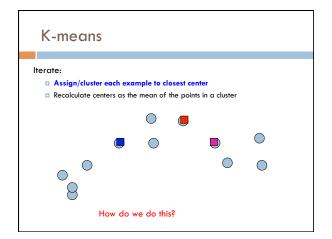


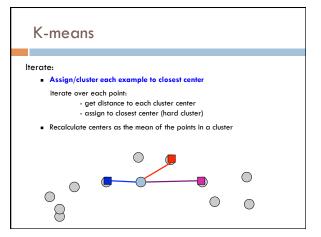


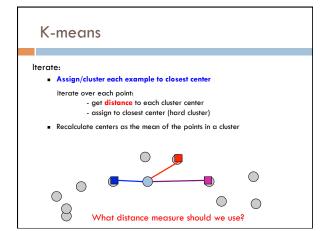


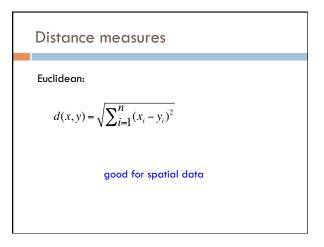


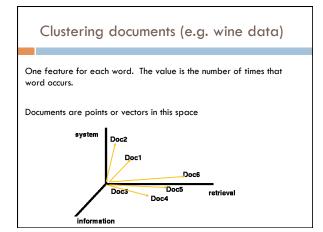


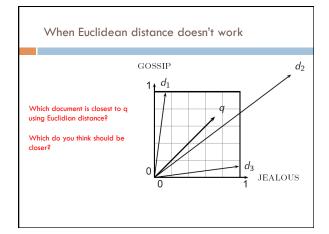


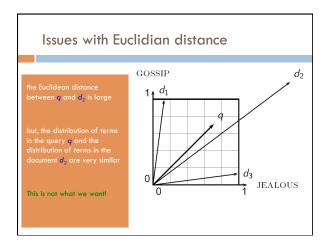


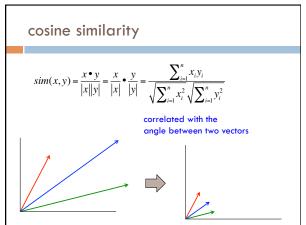


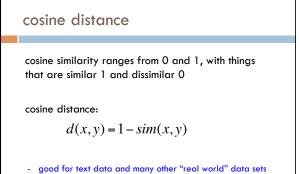




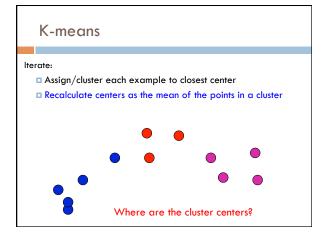


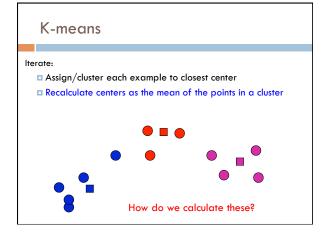


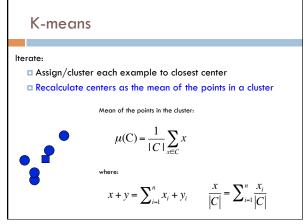




 good for her duit and many oner real world duit sets
 computationally friendly since we only need to consider features that have non-zero values for **both** examples







K-means loss function

K-means tries to minimize what is called the "k-means" loss function:

 $loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$ where μ_k is cluster center for x_i

the sum of the squared distances from each point to the associated cluster center

Minimizing k-means loss

lterate:

Assign/cluster each example to closest center
 Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

Does each step of k-means move towards reducing this loss function (or at least not increasing it)?

Minimizing k-means loss

lterate:

Assign/cluster each example to closest center
 Recalculate centers as the mean of the points in a cluster

 $loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$ where μ_k is cluster center for x_i

This isn't quite a complete proof/argument, but:

- 1. Any other assignment would end up in a larger loss
- 2. The mean of a set of values minimizes the squared error

Minimizing k-means loss

lterate:

Assign/cluster each example to closest center
 Recalculate centers as the mean of the points in a cluster

 $loss = \sum_{k=1}^{n} d(x_i, \mu_k)^2$ where μ_k is cluster center for x_i

Does this mean that k-means will always find the minimum loss/clustering?

Minimizing k-means loss

lterate:

Assign/cluster each example to closest center
 Recalculate centers as the mean of the points in a cluster

 $loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$ where μ_k is cluster center for x_i

NO! It will find a minimum.

Unfortunately, the k-means loss function is generally not convex and for most problems has many, many minima

We're only guaranteed to find one of them

K-means variations/parameters

Start with some initial cluster centers

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

What are some other variations/ parameters we haven't specified?

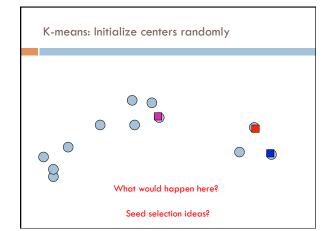
K-means variations/parameters

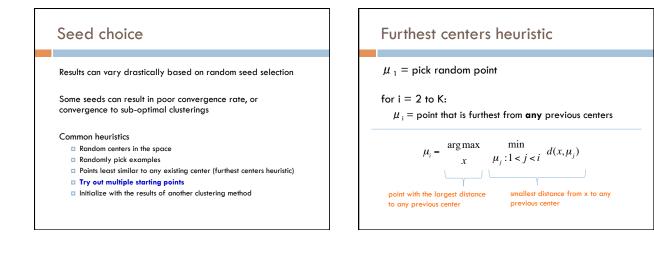
Initial (seed) cluster centers

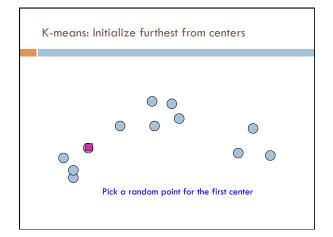
Convergence

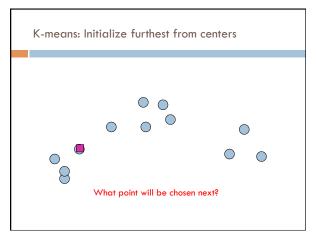
- A fixed number of iterations
- partitions unchanged
- Cluster centers don't change

K!

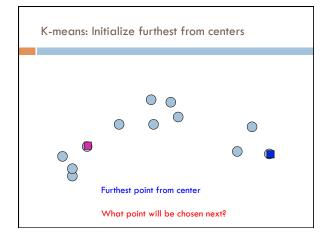


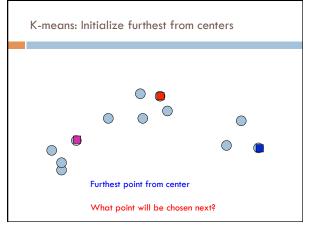


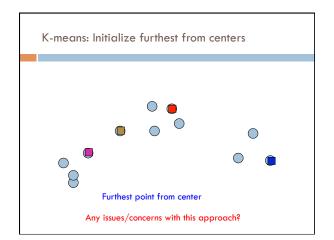


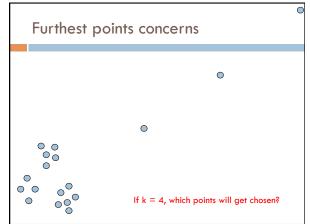


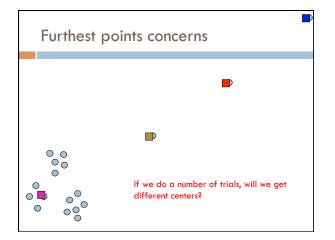
15

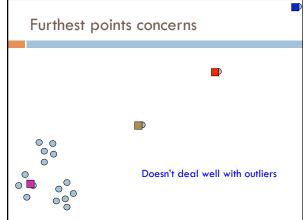












K-means++

 $\mu_1 = pick random point$

for k = 2 to K: for i = 1 to N: $s_i = \min d(x_{\mu} \mid \mu_{1...k\cdot 1}) \mid // \text{ smallest distance to any center}$

 $\mu_{\rm k}$ = randomly pick point **proportionate** to s

How does this help?

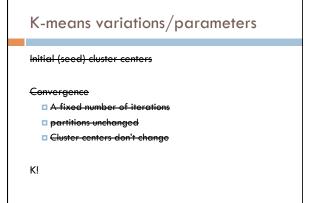
for k = 2 to **K**:

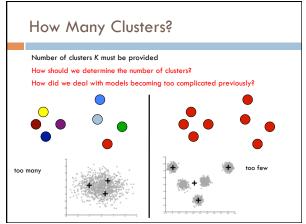
for i = 1 to N:

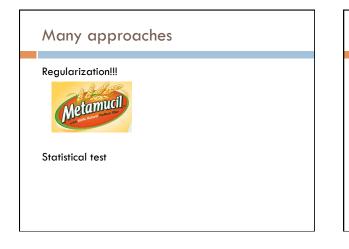
 ${\rm s_i} = \min \, {\rm d}({\rm x_{i'}} \, \, \mu_{1 \ldots k\text{-}1}) \; // \; {\rm smallest} \; {\rm distance} \; {\rm to} \; {\rm any} \; {\rm center}$

 $\mu_{\rm k}$ = randomly pick point **proportionate** to s

- Makes it possible to select other points
 if #points >> #outliers, we will pick good points
- Makes it non-deterministic, which will help with random runs
- Nice theoretical guarantees!





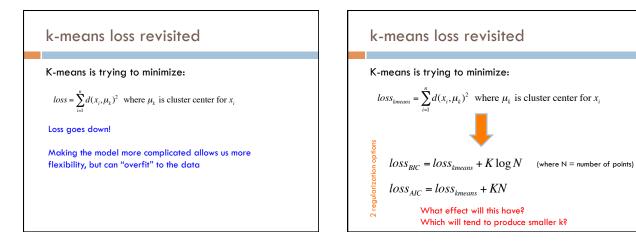


k-means loss revisited

K-means is trying to minimize:

 $loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$ where μ_k is cluster center for x_i

What happens when k increases?



k-means loss revisited

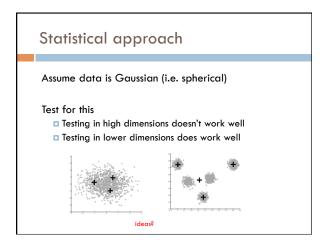
 $loss_{BIC} = loss_{kmeans} + K \log N$ (where N = number of points)

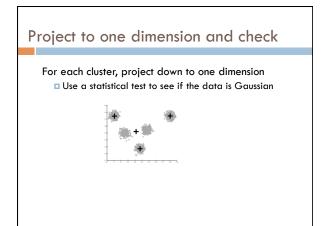
 $loss_{AIC} = loss_{kmeans} + KN$

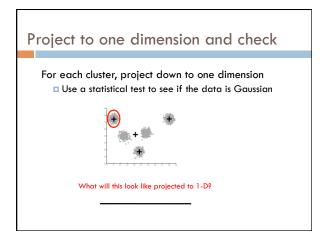
AIC penalizes increases in K more harshly

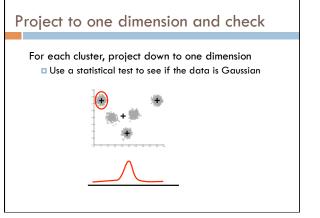
Both require a change to the K-means algorithm

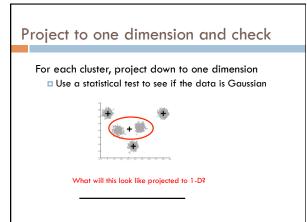
Tend to work reasonably well in practice if you don't know K

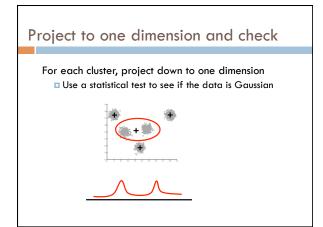


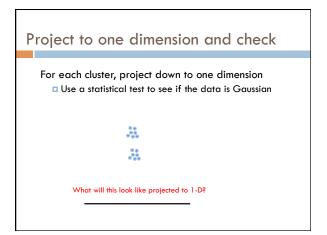


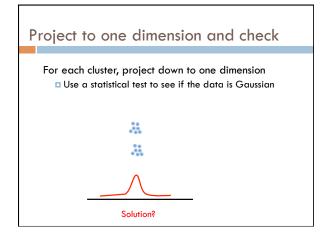


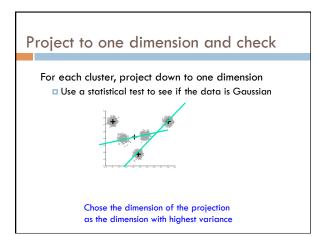


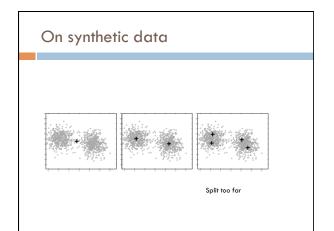


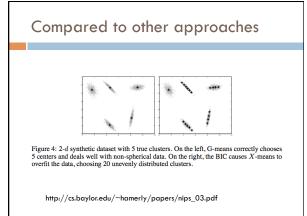












K-Means time complexity

Variables: K clusters, n data points, m features/dimensions, l iterations

What is the runtime complexity?

- Computing distance between two points (e.g. euclidean)
- Reassigning clusters
- Computing new centers
- Iterate...

K-Means time complexity

Variables: K clusters, n data points, m features/dimensions, l iterations

What is the runtime complexity?

- Computing distance between two points is O(m) where m is the
- dimensionality of the vectors/number of features.
- \blacksquare Reassigning clusters: O(Kn) distance computations, or O(Knm)
- Computing centroids: Each points gets added once to some centroid: O(nm)
- □ Assume these two steps are each done once for *l* iterations: O(*lknm*)

In practice, K-means converges quickly and is fairly fast