
11/29/16	  

1	  

UNSUPERVISED LEARNING 
David Kauchak 
CS 158 – Fall 2016 

Administrative 

Final project 
! Nice work forming groups ☺ 
! Status report due tomorrow (Wednesday) 
!  In-class presentation next Tuesday 

 
Midterm 
 
Grading 

Supervised learning 

Supervised learning: given labeled examples 

model/ 
predictor 

label 

label1 

label3 

label4 

label5 

Unsupervised learning 

Unsupervised learning: given data, i.e. examples, but no labels 
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Unsupervised learning 

Given some example without labels, do something! 

Unsupervised applications areas 

learn clusters/groups without any label 
 
customer segmentation (i.e. grouping) 
 
image compression 
 
bioinformatics: learn motifs 
 
find important features 
 
… 

Unsupervised learning: clustering 

Raw data 

extract 
features 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

features 

group into 
classes/
clusters 

No “supervision”, we’re only given data and want to find 
natural groupings 

Clusters 

Unsupervised learning: modeling 

Most frequently, when people think of unsupervised 
learning they think clustering 
 
Another category: learning probabilities/parameters 
for models without supervision 

!  Learn a translation dictionary 
!  Learn a grammar for a language 
!  Learn the social graph 
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Clustering 

Clustering: the process of grouping a set of objects 
into classes of similar objects 

Applications? 

 

Data from Garber et al. 
PNAS (98), 2001. 

Gene expression data 

Face Clustering Face clustering 
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Search result clustering Google News 

Clustering in search advertising 

Find clusters of advertisers and 
keywords 

! Keyword suggestion 
! Performance estimation 

Advertiser Bidded 
Keyword 

bids 

~10M nodes 

Clustering applications 

Find clusters of users 
! Targeted advertising 
! Exploratory analysis 

Clusters of the Web Graph 
! Distributed pagerank 

computation 

~100M nodes 

Who-messages-who IM/text/twitter 
graph 
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Data visualization 

Wise et al, “Visualizing the non-visual” PNNL 
 
ThemeScapes, Cartia 

!  [Mountain height = cluster size] 

A data set with clear cluster structure 

What are some of the 
issues for clustering? 

What clustering 
algorithms have you 
seen/used? 

Issues for clustering 

Representation for clustering 
! How do we represent an example 

"  features, etc. 
!  Similarity/distance between examples 

 
Flat clustering or hierarchical 
 
Number of clusters 

!  Fixed a priori 
! Data driven? 

Clustering Algorithms 

Flat algorithms 
! Usually start with a random (partial) partitioning 
! Refine it iteratively 

" K means clustering 
" Model based clustering 

! Spectral clustering 
 
Hierarchical algorithms 

! Bottom-up, agglomerative 
! Top-down, divisive 
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Hard vs. soft clustering 

Hard clustering: Each example belongs to exactly one cluster 

Soft clustering: An example can belong to more than one cluster 
(probabilistic) 

!  Makes more sense for applications like creating browsable hierarchies 
!  You may want to put a pair of sneakers in two clusters: (i) sports apparel 

and (ii) shoes 

K-means 

Most well-known and popular clustering algorithm: 
 

Start with some initial cluster centers 

 

Iterate: 
!  Assign/cluster each example to closest center 

!  Recalculate centers as the mean of the points in a cluster 

K-means: an example K-means: Initialize centers randomly 
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K-means: Initialize centers randomly 

What points are closest? 

K-means: assign points to nearest center 

K-means: assign points to nearest center 

Where are the new centers? 

K-means: readjust centers 
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K-means: readjust centers 

What points are closest? 

K-means: assign points to nearest center 

K-means: assign points to nearest center 

Where are the new centers? 

K-means: readjust centers 
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K-means: assign points to nearest center K-means: readjust centers 

K-means: readjust centers 

When do we stop? 

K-means: assign points to nearest center 

No changes:  Done 
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K-means 

Iterate: 
!  Assign/cluster each example to closest center 

!  Recalculate centers as the mean of the points in a cluster 

How do we do this? 

K-means 

iterate over each point: 
 - get distance to each cluster center 
 - assign to closest center (hard cluster) 

Iterate: 
"  Assign/cluster each example to closest center 

"  Recalculate centers as the mean of the points in a cluster 

Iterate: 
"  Assign/cluster each example to closest center 

"  Recalculate centers as the mean of the points in a cluster 

K-means 

iterate over each point: 
 - get distance to each cluster center 
 - assign to closest center (hard cluster) 

What distance measure should we use? 

Distance measures 

Euclidean: 
 
 d(x, y) = (xi − yi )

2

i=1
n

∑

good for spatial data 
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Clustering documents (e.g. wine data) 

One feature for each word.  The value is the number of times that 
word occurs. 

 

Documents are points or vectors in this space 

When Euclidean distance doesn’t work 

Which document is closest to q 
using Euclidian distance? 
 
Which do you think should be 
closer? 

Issues with Euclidian distance 

the Euclidean distance 
between q and d2 is large 

 

but, the distribution of terms 
in the query q and the 
distribution of terms in the 
document d2 are very similar 

 

This is not what we want! 

cosine similarity 

sim(x, y) = x• y
x y

=
x
x
•
y
y
=

xiyii=1

n
∑
xi
2

i=1

n
∑ yi

2

i=1

n
∑

correlated with the 
angle between two vectors 
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cosine distance 

cosine similarity ranges from 0 and 1, with things 
that are similar 1 and dissimilar 0 
 
cosine distance: 
 
 

d(x, y) =1− sim(x, y)

-  good for text data and many other “real world” data sets 
-  computationally friendly since we only need to consider 

features that have non-zero values for both examples 

K-means 

Iterate: 
! Assign/cluster each example to closest center 
! Recalculate centers as the mean of the points in a cluster 

Where are the cluster centers? 

K-means 

Iterate: 
! Assign/cluster each example to closest center 
! Recalculate centers as the mean of the points in a cluster 

How do we calculate these? 

K-means 

Iterate: 
! Assign/cluster each example to closest center 
! Recalculate centers as the mean of the points in a cluster 

Mean of the points in the cluster: 

µ(C) = 1
|C |

x
x∈C
∑

where: 

x + y = xi + yii=1

n
∑

x
C
=

xi
Ci=1

n
∑
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K-means loss function 

K-means tries to minimize what is called the “k-means” 
loss function: 
 
 loss = d(xi,µk )

2   where µk  is cluster center for xi
i=1

n

∑

the sum of the squared distances from each point 
to the associated cluster center  

Minimizing k-means loss 

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does each step of k-means move towards reducing this loss 
function (or at least not increasing it)? 

Minimizing k-means loss 

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

This isn’t quite a complete proof/argument, but: 
 
1.  Any other assignment would end up in a larger loss 
 
2.  The mean of a set of values minimizes the squared error 

Minimizing k-means loss 

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does this mean that k-means will always find the minimum 
loss/clustering? 
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Minimizing k-means loss 

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

NO!  It will find a minimum. 
 
Unfortunately, the k-means loss function is generally not 
convex and for most problems has many, many minima 
 
We’re only guaranteed to find one of them 

K-means variations/parameters 

Start with some initial cluster centers 
 
Iterate: 

"  Assign/cluster each example to closest center 
"  Recalculate centers as the mean of the points in a cluster 

What are some other variations/
parameters we haven’t specified? 

K-means variations/parameters 

Initial (seed) cluster centers 
 
Convergence 

! A fixed number of iterations 
! partitions unchanged 
! Cluster centers don’t change 

 
K! 

K-means: Initialize centers randomly 

What would happen here? 

Seed selection ideas? 



11/29/16	  

15	  

Seed choice 

Results can vary drastically based on random seed selection 
 
Some seeds can result in poor convergence rate, or 
convergence to sub-optimal clusterings 
 
Common heuristics 

!  Random centers in the space 
!  Randomly pick examples 
!  Points least similar to any existing center (furthest centers heuristic) 
!  Try out multiple starting points 
!  Initialize with the results of another clustering method 

Furthest centers heuristic 

μ1 = pick random point 
 

for i = 2 to K: 
μi = point that is furthest from any previous centers 

µi =
argmax

x
min

µ j :1< j < i
d(x,µ j )

smallest distance from x to any 
previous center 

point with the largest distance 
to any previous center 

K-means: Initialize furthest from centers 

Pick a random point for the first center 

K-means: Initialize furthest from centers 

What point will be chosen next? 
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K-means: Initialize furthest from centers 

Furthest point from center 

What point will be chosen next? 

K-means: Initialize furthest from centers 

Furthest point from center 

What point will be chosen next? 

K-means: Initialize furthest from centers 

Furthest point from center 

Any issues/concerns with this approach? 

Furthest points concerns 

If k = 4, which points will get chosen? 
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Furthest points concerns 

If we do a number of trials, will we get 
different centers? 

Furthest points concerns 

Doesn’t deal well with outliers 

K-means++ 

μ1 = pick random point 
 

for k = 2 to K: 
for i = 1 to N: 

si = min d(xi, μ1…k-1) // smallest distance to any center 
 

μk = randomly pick point proportionate to s 

How does this help? 

K-means++ 

μ1 = pick random point 
 

for k = 2 to K: 
for i = 1 to N: 

si = min d(xi, μ1…k-1) // smallest distance to any center 
 

μk = randomly pick point proportionate to s 

-  Makes it possible to select other points 
-  if #points >> #outliers, we will pick good points 

-  Makes it non-deterministic, which will help with random runs 
-  Nice theoretical guarantees! 



11/29/16	  

18	  

K-means variations/parameters 

Initial (seed) cluster centers 
 
Convergence 

! A fixed number of iterations 
! partitions unchanged 
! Cluster centers don’t change 

 
K! 

How Many Clusters? 

Number of clusters K must be provided 

How should we determine the number of clusters? 

How did we deal with models becoming too complicated previously? 

too many too few 

Many approaches 

Regularization!!! 
 
 
 
 
Statistical test 
 

k-means loss revisited 

K-means is trying to minimize: 
 
 
 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

What happens when k increases? 
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k-means loss revisited 

K-means is trying to minimize: 
 
 
 

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Loss goes down! 
 
Making the model more complicated allows us more 
flexibility, but can “overfit” to the data 

k-means loss revisited 

K-means is trying to minimize: 
 
 
 

losskmeans = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

lossBIC = losskmeans +K logN

lossAIC = losskmeans +KN

(where N = number of points) 

What effect will this have? 
Which will tend to produce smaller k? 

2 
re

gu
la

riz
at

io
n 

op
tio

ns
 

k-means loss revisited 

lossBIC = losskmeans +K logN

lossAIC = losskmeans +KN

(where N = number of points) 

2 
re

gu
la

riz
at

io
n 

op
tio

ns
 

AIC penalizes increases in K more harshly 
 
Both require a change to the K-means algorithm 
 
Tend to work reasonably well in practice if you don’t know K 

Statistical approach 

Assume data is Gaussian (i.e. spherical) 

Test for this 
! Testing in high dimensions doesn’t work well 
! Testing in lower dimensions does work well 

ideas? 
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Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

What will this look like projected to 1-D? 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

What will this look like projected to 1-D? 
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Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

What will this look like projected to 1-D? 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

Solution? 

Project to one dimension and check 

For each cluster, project down to one dimension 
! Use a statistical test to see if the data is Gaussian 

Chose the dimension of the projection 
as the dimension with highest variance 
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On synthetic data 

Split too far 

Compared to other approaches 

http://cs.baylor.edu/~hamerly/papers/nips_03.pdf 

K-Means time complexity 

Variables: K clusters, n data points,  
m features/dimensions, I iterations 
 
What is the runtime complexity? 

! Computing distance between two points (e.g. 
euclidean) 

! Reassigning clusters 
! Computing new centers 
!  Iterate… 

K-Means time complexity 

Variables: K clusters, n data points,  
m features/dimensions, I iterations 

 

What is the runtime complexity? 
!  Computing distance between two points is O(m) where m is the 

dimensionality of the vectors/number of features. 
!  Reassigning clusters: O(Kn) distance computations, or O(Knm) 

!  Computing centroids: Each points gets added once to some centroid: 
O(nm) 

!  Assume these two steps are each done once for I iterations:  O(Iknm) 

In practice, K-means converges quickly and is fairly fast  


