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LARGE MARGIN CLASSIFIERS 

David Kauchak 
CS 158 – Fall 2016 

Admin 

Assignment 5 
!  back soon 
!  write tests for your code! 
!  variance scaling uses standard deviation 
!  for this class 

 
Assignment 6 
 
Midterm 
 
Course feedback 

!  Thanks! 
!  We’ll go over it at the end of class today or the beginning of next class 

stdev(data) =
(x −mean(data))2

x∈data
∑

size(data)−1

Which hyperplane? 

Two main variations in linear classifiers: 
-  which hyperplane they choose when the data is linearly separable 
-  how they handle data that is not linearly separable 

Linear approaches so far 

Perceptron: 
-  separable: 
-  non-separable: 

Gradient descent: 
-  separable: 
-  non-separable: 
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Linear approaches so far 

Perceptron: 
-  separable:  

-  finds some hyperplane that separates the data 
-  non-separable: 

-  will continue to adjust as it iterates through the examples 
-  final hyperplane will depend on which examples it saw recently 

Gradient descent: 
-  separable and non-separable 

-  finds the hyperplane that minimizes the objective function (loss + 
regularization) 

 
Which hyperplane is this? 

Which hyperplane would you choose? 

Large margin classifiers 

Choose the line where the distance to the nearest 
point(s) is as large as possible 

margin margin 

Large margin classifiers 

The margin of a classifier is the distance to the closest points of either class 
 
Large margin classifiers attempt to maximize this 

margin margin 
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Support vectors 

For any separating hyperplane, there exist some set of “closest points” 
 
These are called the support vectors 
 
For n dimensions, there will be at least n+1 support vectors  

Measuring the margin 

The margin is the distance to the support vectors, i.e. 
the “closest points”, on either side of the hyperplane 

Measuring the margin 

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples 

w ⋅ xi + b > 0
positive examples 

Measuring the margin 

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples 

w ⋅ xi + b > 0
positive examples 

What are the equations for the margin lines? 
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Measuring the margin 

w ⋅ xi + b = 0
w ⋅ xi + b = −c

w ⋅ xi + b = c

What is c? 

We know they’re the same distance apart (otherwise, they wouldn’t be 
support vectors!) 

Measuring the margin 

w ⋅ xi + b = 0

w ⋅ xi + b = −c

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane 

Measuring the margin 

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane 

Larger w result in 
larger constants 

w ⋅ xi + b = −c

Measuring the margin 

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane 

Smaller w result in 
smaller constants 

w ⋅ xi + b = −c
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Measuring the margin 

w ⋅ xi + b =1

For now, let’s assume c = 1. 

What is this distance? 

w ⋅ xi + b = −1

Distance from the hyperplane 

w=(1,2) 

f1 

f2 

(-1,-2) 

How far away is this point from the hyperplane? 

Distance from the hyperplane 

f1 

f2 

(-1,-2) 

How far away is this point from the hyperplane? 

w=(1,2) 

d = 12 + 22 = 5

Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is this point from the hyperplane? 

w=(1,2) 
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Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is this point from the hyperplane? 

w=(1,2) 

d(x) = w ⋅ x + b

Is it? 

Distance from the hyperplane 

f1 

f2 

(1,1) 

Does that seem right?  What’s the problem? 

w=(1,2) 

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

=1*1+1*2+ 0

= 3?

Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is the point from the hyperplane? 

w=(2,4) 

d(x) = w ⋅ x + b

Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is the point from the hyperplane? 

w=(2,4) 

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

= 2*1+ 4*2+ 0

=10?
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Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is this point from the hyperplane? 

w=(1,2) 

d(x) = w ⋅ x + b
w

length normalized 
weight vectors 

Distance from the hyperplane 

f1 

f2 

(1,1) 

How far away is this point from the hyperplane? 

w=(1,2) 

=
w1x1 +w2x2( )+ b

5

=
1*1+1*2( )+ 0

5
=1.34

d(x) = w ⋅ x + b
w

Distance from the hyperplane 

f1 

f2 

(1,1) 

The magnitude of the weight vector doesn’t matter 

w=(2,4) 

length normalized 
weight vectors 

d(x) = w ⋅ x + b
w

Distance from the hyperplane 

f1 

f2 

(1,1) 

w=(0.5,1) 

d(x) = w ⋅ x + b
w

length normalized 
weight vectors 

The magnitude of the weight vector doesn’t matter 
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Measuring the margin 

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1. 

What is this distance? 

Measuring the margin 

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1. 

w ⋅ xi + b
w

=
1
w

Large margin classifier setup 

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin! 
 
Setup as a constrained optimization problem: 

maxw,b   margin(w,b)

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

what does this say? 

Large margin classifier setup 

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin! 
 
Setup as a constrained optimization problem: 

maxw,b   1
w

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 
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Maximizing the margin 

subject to: 

Maximizing the margin is equivalent to minimizing ||w||! 
               (subject to the separating constraints) 

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

Maximizing the margin 

subject to: 

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i
The constraints: 
1.  make sure the data is separable 
2.  encourages w to be larger (once the data is separable) 

The minimization criterion wants w to be as small as possible 

Measuring the margin 

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1. 

Claim: it does not matter 
what c we choose for the 
SVM problem. Why? 

Measuring the margin 

w ⋅ xi + b = −c

w ⋅ xi + b = c

What is this distance? 
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Measuring the margin 

w ⋅ xi + b = −c

w ⋅ xi + b = c

w ⋅ xi + b
w

=
c
w

Maximizing the margin 

subject to: 

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs. 

subject to: 

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

What’s the difference? 

Maximizing the margin 

subject to: 

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs. 

subject to: 

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

Learn the exact same 
hyperplane just scaled by a 
constant amount 
 
Because of this, often see it 
with c = 1 

For those that are curious… 
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Maximizing the margin: the real problem 

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

Why the squared? 

minw,b   w 2

Maximizing the margin: the real problem 

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w 2
= wii∑

2

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w = wii∑
2

Minimizing ||w|| is equivalent to minimizing ||w||2 

The sum of the squared weights is a convex function! 

Support vector machine problem 

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w 2

This is a version of a quadratic optimization problem 
 
Maximize/minimize a quadratic function 
 
Subject to a set of linear constraints 
 
Many, many variants of solving this problem (we’ll see one in a bit) 

Soft Margin Classification   

What about this problem? 

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w 2
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Soft Margin Classification   

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w 2

We’d like to learn something like this, 
but our constraints won’t allow it ! 

Slack variables 

yi (w ⋅ xi + b) ≥1  ∀i
subject to: 

minw,b   w 2

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack variables  
(one for each example) 

What effect does this have? 

Slack variables 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack penalties 

Slack variables 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

allowed to make a mistake 

penalized by how far 
from “correct” 

trade-off between margin 
maximization and penalization margin 
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Soft margin SVM 

Still a quadratic optimization problem! 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

Demo 

http://cs.stanford.edu/people/karpathy/svmjs/demo/ 

Solving the SVM problem Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

Given the optimal solution, w, b: 
 
Can we figure out what the slack penalties are for each point? 
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Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

What do the margin lines 
represent wrt w,b? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

w ⋅ xi + b =1
w ⋅ xi + b = −1

Or:  yi (w ⋅ xi + b) =1

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points outside (or on) the 
margin AND correctly classified?  

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

0!  The slack variables have to be greater than or equal to zero 
and if they’re on or beyond the margin then yi(wxi+b) ≥ 1 already 
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Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points inside the margin 
AND classified correctly? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Difference from the point to the margin.  Which is? 

ς i =1− yi (w ⋅ xi + b)

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points that are incorrectly classified? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Which is? 



10/4/16	  

16	  

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin 

? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin 

−yi (w ⋅ xi + b) Why -? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin 

−yi (w ⋅ xi + b) ? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin 

−yi (w ⋅ xi + b) 1 
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Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin 

ς i =1− yi (w ⋅ xi + b)

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&

Understanding the Soft Margin SVM 

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&

ς i =max(0,1− yi (w ⋅ xi + b))

=max(0,1− yy ')

Does this look familiar? 

Hinge loss! 

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss: 

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2
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Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

Do we need the constraints still? 

Understanding the Soft Margin SVM 

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to: 

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

minw,b   w 2
+C max(0,1− yi (w ⋅ xi + b))

i∑

Unconstrained problem! 

Understanding the Soft Margin SVM 

minw,b   w 2
+C losshinge(yi, yi ')i∑

Does this look like something we’ve seen before? 

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

Gradient descent problem! 

Soft margin SVM as gradient descent 

minw,b   w 2
+C losshinge(yi, yi ')i∑

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

minw,b   losshinge(yi, yi ')i∑ +
1
C
w 2multiply through by 1/C 

and rearrange 

minw,b   losshinge(yi, yi ')i∑ +λ w 2
let λ=1/C 

What type of gradient descent problem? 
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Soft margin SVM as gradient descent 

One way to solve the soft margin SVM problem is 
using gradient descent 

minw,b   losshinge(yi, yi ')i∑ +λ w 2

hinge loss L2 regularization 

Gradient descent SVM solver 

!  pick a starting point (w) 
!  repeat until loss doesn’t decrease in all dimensions: 

"  pick a dimension 
"  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj +η yixi1[yi (w ⋅ x + b)<1]
i=1

n

∑ −ηλwj

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

hinge loss L2 regularization 

Finds the largest margin hyperplane while allowing for a soft margin 

Support vector machines: 2013 

One of the most successful (if not the most successful) 
classification approach: 

Support vector machine 

perceptron algorithm 

k nearest neighbor 

decision tree 

Support vector machines: 2016 

One of the most successful (if not the most successful) 
classification approach: 

Support vector machine 

perceptron algorithm 

k nearest neighbor 

decision tree 
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Trends over time 


