

Linear approaches so far

Perceptron:

separable:

- finds some hyperplane that separates the data
- non-separable:
- will continue to adjust as it iterates through the examples
- final hyperplane will depend on which examples it saw recently

Gradient descent:

separable and non-separable

finds the hyperplane that minimizes the objective function (loss + regularization)

Which hyperplane is this?

Large margin classifier setup

Select the hyperplane with the largest margin where the points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

 $\max_{w,b} \operatorname{margin}(w,b)$ subject to: $w(w, x + b) > 1 \quad \forall i$

 $y_i(w \cdot x_i + b) \ge 1 \quad \forall i$ what does this say?

Large margin classifier setup

Select the hyperplane with the largest margin where the points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

$$\max_{\substack{w,b \\ \text{subject to:}}} \frac{1}{\|w\|}$$
$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

Maximizing the margin

$$\begin{split} \min_{\boldsymbol{w},\boldsymbol{b}} & \left\|\boldsymbol{w}\right\| \\ \text{subject to:} & \\ & y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b}) \geq 1 \;\; \forall i \end{split}$$

Maximizing the margin is equivalent to minimizing ||w||! (subject to the separating constraints)

Maximizing the margin

The minimization criterion wants w to be as small as possible

 $\min_{w,b} |w|$

subject to:

 $y_i(w \cdot x_i + b) \ge 1 \;\; \forall i$

The constraints: 1. make sure the data is separable 2. encourages w to be larger (once the data is separable)

Hinge loss!		
0/1 loss:	$l(y,y') = 1 \big[yy' \leq 0 \big]$	
Hinge:	$l(y, y') = \max(0, 1 - yy')$	
Exponential:	$l(y, y') = \exp(-yy')$	
Squared loss:	$l(y, y') = (y - y')^2$	

Soft margin	SVM as gradient descent
	$\min_{w,b} \ w\ ^2 + C \sum_i loss_{hinge}(y_i, y_i')$
multiply through by 1/C and rearrange	$\min_{w,b} \sum_{i} loss_{hinge}(y_i, y_i') + \frac{1}{C} \left\ w \right\ ^2$
let $\lambda = 1/C$	$\min_{w,b} \sum_{i} loss_{hinge}(y_i, y_i') + \lambda \ w\ ^2$
	What type of gradient descent problem?
	$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy^{i}) + \lambda \ regularizer(w,b)$

Support vector	machines: 2013
One of the most success classification approach:	ful (if not the most successful)
decision tree	About 2,160,000 results (0.05 sec)
Support vector machine	About 1,960,000 results (0.04 sec)
k nearest neighbor	About 746,000 results (0.04 sec)
perceptron algorithm	About 84,300 results (0.04 sec)

support vec Search term	 decision tree Search term 	 nearest nei Search term 	perceptron Search term	+
rldwide 🔻 20	I04 - present ▼ All	categories 🔻 Web S	earch 🔻	
Interest over time	0			
	Μ.Α.			
	- 11/14			