

Admin

Assignment 5

- back soon
- write tests for your code!
variance scaling uses standard deviation
$\operatorname{stdev}($ data $)=\sqrt{\frac{\sum_{x \in \text { data }}(x-\text { mean }(\text { data }))^{2}}{\operatorname{size}(\text { data })-1}}$
Assignment 6

Midterm

Course feedback

- Thanks!
- We'll go over it at the end of class today or the beginning of next class

Linear approaches so far

Perceptron:

separable:
non-separable:

Gradient descent:
separable:
non-separable:

Linear approaches so far
Perceptron:
\quadseparable: \quad finds some hyperplane that separates the data non-separable: will continue to adjust as it iterates through the examples final hyperplane will depend on which examples it saw recently
Gradient descent:
\quadseparable and non-separable finds the hyperplane that minimizes the objective function (loss + regularization)
Which hyperplane is this?

Which hyperplane would you choose?

Measuring the margin

The margin is the distance to the support vectors, i.e. the "closest points", on either side of the hyperplane

Measuring the margin

Distance from the hyperplane

Distance from the hyperplane			
How far away is this point from the hyperplane?			
	$d(x)=\frac{w \cdot x+b}{\\|w\\|}$		
	$=\frac{\left(w_{1} x_{1}+w_{2} x_{2}\right)+b}{\sqrt{5}}$		
	$=\frac{\left(1 * 1+1^{*} 2\right)+0}{\sqrt{5}}$		
	$=1.34$		

Large margin classifier setup

Select the hyperplane with the largest margin where the points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

$$
\max _{w, b} \frac{1}{\|w\|}
$$

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

Maximizing the margin
$\qquad$$\min _{w, b} \quad\\|w\\|$ subject to: $y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$
Maximizing the margin is equivalent to minimizing $\|\|w\|\|!$ (subject to the separating constraints)

Maximizing the margin
The minimization criterion wants w to be as small as possible
$\min _{w, b}\\|w\\|$
subject to:
$y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$
The constraints:
1. make sure the data is separable
2. encourages w to be larger (once the data is separable)

Maximizing the margin
$\min _{w, b} \frac{\\|w\\|}{c}$
subject to: $y_{i}\left(w \cdot x_{i}+b\right) \geq c \quad \forall i$ vs. $\min _{w, b}\\|w\\|$ subject to: $y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$$\quad$ What's the difference?

Maximizing the margin			
$\min _{w, b} \frac{\\|w\\|}{c}$			
subject to:			
$y_{i}\left(w \cdot x_{i}+b\right) \geq c \quad \forall i$	Learn the exact same hyperplane just scaled by a constant amount		
vs.	Because of this, often see it with $\mathrm{c}=1$		
$\min _{w, b}\\|w\\|$			
subject to: $^{y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i}$			

For those that are curious...

$$
\begin{aligned}
\frac{\|w\|}{c} & =\frac{\sqrt{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}+b^{2}}}{c} \\
& =\sqrt{\left(\frac{\sqrt{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}}}{c}\right)^{2}} \\
& =\sqrt{\frac{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}}{c^{2}}} \\
& =\sqrt{\frac{w_{1}^{2}}{c^{2}}+\frac{w_{2}^{2}}{c^{2}}+\ldots+\frac{w_{m}^{2}}{c^{2}}} \\
& =\sqrt{\left(\frac{w_{1}}{c}\right)^{2}+\left(\frac{w_{2}}{c}\right)^{2}+\ldots+\left(\frac{w_{m}}{c}\right)^{2}} \quad \text { scaled version of } w
\end{aligned}
$$

We'd like to learn something like this, but our constraints won't allow it $: 2$

Slack variables

Demo

Understanding the Soft Margin SVM

Given the optimal solution, w, b :
Can we figure out what the slack penalties are for each point?

Understanding the Soft Margin SVM

Difference from the point to the margin. Which is?

$$
\varsigma_{i}=1-y_{i}\left(w \cdot x_{i}+b\right)
$$

Understanding the Soft Margin SVM

"distance" to the hyperplane plus the "distance" to the margin $-y_{i}\left(w \cdot x_{i}+b\right) \quad$ Why -?

Understanding the Soft Margin SVM

"distance" to the hyperplane plus the "distance" to the margin $-y_{i}\left(w \cdot x_{i}+b\right) \quad 1$

Understanding the Soft Margin SVM
$\min _{w, b}\|w\|^{2}+C \sum_{i} s_{i}$
subject to:
$y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i} \quad \forall i$

$$
s_{i} \geq 0
$$

$s_{i}=\left\{\begin{array}{cc}0 & \text { if } y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \\ 1-y_{i}\left(w \cdot x_{i}+b\right) & \text { otherwise }\end{array}\right.$

Understanding the Soft Margin SVM
$\begin{array}{cl} \min _{w, b} & \\|w\\|^{2}+C \sum_{i} \varsigma_{i} \\ \text { subject to: } \\ y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i} \forall i \\ \varsigma_{i} \geq 0 \end{array}$ Do we need the constraints still?

Understanding the Soft Margin SVM
$\min _{w, b}\\|w\\|^{2}+C \sum_{i} \varsigma_{i}$ subject to: $y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i} \quad \forall i$ $\varsigma_{i} \geq 0$
$\sin _{i}=\max \left(0,1-y_{i}\left(w \cdot x_{i}+b\right)\right)$
$\min _{w, b}\\|w\\|^{2}+C \sum_{i} \max \left(0,1-y_{i}\left(w \cdot x_{i}+b\right)\right)$
Unconstrained problem!

Understanding the Soft Margin SVM
$\min _{w, b}\|w\|^{2}+C \sum_{i} \operatorname{loss}_{\text {hinge }}\left(y_{i}, y_{i}{ }^{\prime}\right)$
Does this look like something we've seen before?
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda$ regularizer (w, b)
Gradient descent problem!

Soft margin SVM as gradient descent			
multiply through by $1 / \mathrm{C}$ and rearrange	$\min _{w, b}\\|w\\|^{2}+C \sum_{i} \operatorname{loss}_{\text {hinge }}\left(y_{i}, y_{i}{ }^{\prime}\right)$		
	$\min _{w, b} \sum_{i} l o s s_{\text {hinge }}\left(y_{i}, y_{i}^{\prime}\right)+\frac{1}{C}\\|w\\|^{2}$		
let $\lambda=1 / \mathrm{C}$	$\min _{w, b} \sum_{i}$ loss $_{\text {hinge }}\left(y_{i}, y_{i}{ }^{\prime}\right)+\lambda\\|w\\|^{2}$		
	What type of gradient descent problem? $\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w, b)$		

Support vector machines: 2013

One of the most successful (if not the most successful) classification approach:

decision tree

About $2,160,000$ results $(0.05 \mathrm{sec})$
Support vector machine
About $1,960,000$ results (0.04 sec)
k nearest neighbor
About 746,000 results $(0.04 \mathrm{sec})$
About 84,300 results $(0.04 \mathrm{sec})$
perceptron algorithm

Google

Support vector machines: 2016

One of the most successful (if not the most successful) classification approach:
decision tree \quad About $2,480,000$ results $(0.04 \mathrm{sec})$
Support vector machine About $2,430,000$ results $(0.05 \mathrm{sec})$
k nearest neighbor \quad About 979,000 results $(0.04 \mathrm{sec})$
perceptron algorithm
About 104,000 results $(0.08 \mathrm{sec})$

Google

