

Admin

\square Assignment 3

- due Monday at 11:59pm
\square one small error in 5b (fast division) that's been fixed
\square Midterm next Thursday in-class (10/1)
\square Comprehensive :
\square Closed books, notes, computers, etc.
\square Except, may bring up to 2 pages of notes
\square Practice problems posted
- Also some practice problems in the Intro SML reading
\square Midterm review sessions Tuesday and Wednesday (Q\&A session for midterm)

Midterm topics
SML
recursion
math

Midterm topics

\square Basic syntax

- SML built-in types
\square Defining function
- pattern matching
\square Function type signatures
\square Recursion!
\square map
\square exceptions
- Defining datatypes
\square addition, subtraction, multiplication manually and on list digits
\square Numbers in different bases
\square Binary number representation (first part of today's lecture)
- NOT CS41B material

Twos complement
How many numbers can we represent with each approach using 4 bits?
$16\left(2^{4}\right)$ numbers, 0000, 0001, ..., 1111 Doesn't matter the representation!
unsigned signed (twos complement) $\frac{2^{3}}{-^{3}}$$\frac{2^{2}}{2^{2}}$$\frac{2^{1}}{2^{1}}$

Twos complement How many numbers can we represent with each approach using 32 bits? $\qquad 2^{32} \approx 4$ billion numbers unsigned signed (twos complement) $\frac{2^{3}}{\sqrt[-2^{3}]{2}}$ $\frac{2^{2}}{2^{2}}$ $\frac{2^{1}}{2^{1}}$ $\frac{2^{0}}{2^{0}}$

$\left.\begin{array}{|c|c|c|}\hline \text { binary } \\ \text { representation }\end{array}\right)$

binary representation	unsigned	twos complement
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	?
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

binary representation	unsigned	twos complement
0000	0	0
0001	1	1
0010	2	2
001	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	?
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

binary representation							unsigned	twos complement
0000	0	0						
0001	1	1						
0010	2	2						
0011	3	3						
0100	4	4						
0101	5	5						
0110	6	6						
0111	7	7						
1000	8	-8						
1001	9	-7						
1010	10	-6						
1011	11	-5						
1100	12	-4						
1101	13	-3						
1110	14	-2						
	111	15						

binary representation	unsigned	twos complement
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	How can you tell if a
0111	7	6
number is negative?		
1000	8	7
1001	9	-8
1010	10	-7
1011	11	-6
1100	12	-5
1101	13	-4
1110	14	-3
111	15	-2
	-1	

binary representation	Unsigned	twos complement
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	High order bit!
0111	7	6
1000	8	7
1001	9	-8
1010	10	-7
1011	11	-6
1100	12	-5
1101	13	-4
1110	14	-3
1111	15	-2

Addition with twos complement numbers
0001 +0101

Addition with twos complement numbers		
	0110	6
	+0101	5
	1011 ?	11
Overflow! We cannot represent this number (it's too large)		

Subtraction
\square Negate the $2^{\text {nd }}$ number (flip the bits and add 1)
\square Add them!

Hexadecimal numbers

Hexadecimal $=$ base 16

What will be the digits?

Hexadecimal numbers

Hexadecimal $=$ base 16

Hexadecimal numbers

Hexadecimal $=$ base 16
Digits

Computer internals

Memory sizes	
	bits
byte	8
kilobyte (KB)	$2^{\wedge} 10$ bytes $=\sim 8,000$
megabyte (MB)	$2^{\wedge} 20=\sim 8$ million
gigabyte (GB)	$2^{\wedge} 30=\sim 8$ billion
My laptop has 16 GB (gigabytes) of memory. How many bits is that?	

add r1 r2 r3		
What does this do?		
abbreviation	arguments	action
Register Instructions		
mov	RR-	dest $=$ src0
neg	RR-	dest $=-$ srco
add	RRR	dest $=$ src0 + src1
sub	RRR	dest $=$ srco - src1
adc	RRS	dest $=$ src0 + arg
sbc	RRS	dest $=$ src0 - arg

	adc neg sub r2 What num	$\begin{aligned} & 1 \mathrm{rO} 8 \\ & 2 \mathrm{r} 1 \\ & 2 \mathrm{rl} \text { r2 } \end{aligned}$ mber is in r2?
abbreviation	arguments	action
Register Instructions		
mov	RR-	dest $=$ src0
neg	RR-	dest $=-$ src0
add	RRR	dest $=$ src0 + src1
sub	RRR	dest $=$ src0 - src1
adc	RRS	dest $=$ src0 +arg
sbc	RRS	dest $=$ src0 -arg

