
10/29/15	

1	

ENCRYPTION
David Kauchak
CS52 – Spring 2015

Admin

Assignment 6

4 more assignments:
!  Assignment 7, due 11/13 5pm
!  Assignment 8, due 11/20 5pm
!  Assignments 9 & 10, due 12/9 11:59pm

Admin

Midterm next Thursday
! Covers everything from 9/24 – 10/27 + some minor

SML
! Will not have to write any assembly
! 2 pages of notes
! Review sessions next week (TBA)

Encryption

What is it and why do we need it?

10/29/15	

2	

Encryption

I like
bananas

Encryption

I like
bananas

Encryption: a bad attempt

I like
bananas

Encryption: the basic idea

I like
bananas

encrypt m
essage

send encrypted message

de
cr

yp
t m

es
sa

ge

I like
bananas

10/29/15	

3	

Encryption: a better approach

the hawk sleeps
at midnight

Encryption uses

Where have you seen encryption used?

Encryption uses Private key encryption

I like
bananas

encrypt m
essage

send encrypted message

de
cr

yp
t m

es
sa

ge

I like
bananas

10/29/15	

4	

Private key encryption

Any problems with this?

Private key encryption

Private key encryption

?

Public key encryption

private key public key

Two keys, one you make publicly
available and one you keep to yourself

10/29/15	

5	

Public key encryption

Share your public key with everyone

Public key encryption

I like
bananas

encrypt m
essage

send encrypted message

de
cr

yp
t m

es
sa

ge

I like
bananas

Public key encryption

de
cr

yp
t m

es
sa

ge

I like
bananas

Only the person with the
private key can decrypt!

Modular arithmetic

Normal arithmetic:
a = b
a is equal to b or a-b = 0

Modular arithmetic:
a b (mod n)
a-b = n*k for some integer k or
a = b + n*k for some integer k or
a % n = b % n (where % is the mod operator)

10/29/15	

6	

Modular arithmetic

Which of these statements are true?

12 5 (mod 7)

52 92 (mod 10)

17 12 (mod 6)

65 33 (mod 32)

a-b = n*k for some integer k or
a = b + n*k for some integer k or
a % n = b % n (where % is the mod operator)

Modular arithmetic

Which of these statements are true?

12 5 (mod 7)

52 92 (mod 10)

17 12 (mod 6)

65 33 (mod 32)

12-5 = 7 = 1*7
12 % 7 = 5 = 5 % 7

92-52 = 40 = 4*10
92 % 10 = 2 = 52 % 20

65-33 = 32 = 1*32
65 % 32 = 1 = 33 % 32

17-12 = 5
17 % 6 = 5
12 % 6 = 0

Modular arithmetic properties

a b (mod n)
If:

a mod n b mod n (mod n)
then:

“mod”/remainder operator congruence (mod n)

Modular arithmetic properties

a b (mod n)
If:

a mod n b mod n (mod n)
then:

More importantly:

(a+b) mod n (a mod n) + (b mod n) (mod n)

(a*b) mod n (a mod n) * (b mod n) (mod n)

and

What do these say?

10/29/15	

7	

Modular arithmetic

Why talk about modular arithmetic and congruence?
How is it useful? Why might it be better than normal
arithmetic?

We can limit the size of the numbers we’re dealing
with to be at most n (if it gets larger than n at any
point, we can always just take the result % n)

The mod operator can be thought of as mapping a
number in the range 0 … number-1

GCD

What does GCD stand for?

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(25, 15) = ?

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(25, 15) = 5

25

25
5
1

Divisors:

15

15
5
3
1

10/29/15	

8	

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(100, 52) = ?

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(100, 52) = 4

100
100

50
25
20
10
5
4
2
1

Divisors:

52

52
13
4
2
1

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(100, 9) = ? gcd(23, 5) = ?

gcd(7, 56) = ? gcd(14, 63) = ?

gcd(111, 17) = ?

Greatest Common Divisor

gcd(a, b) is the largest positive integer that divides
both numbers without a remainder

gcd(100, 9) = 1 gcd(23, 5) = 1

gcd(7, 56) = 7 gcd(14, 63) = 7

gcd(111, 17) = 1

Any observations?

10/29/15	

9	

Greatest Common Divisor

When the gcd = 1, the two numbers share no factors/
divisors in common

If gcd(a,b) = 1 then a is relatively prime to b

This a weaker condition than primality, since any two
prime numbers are also relatively prime, but not vice
versa

Greatest Common Divisor

A useful property:

If two numbers are relatively prime (i.e. gcd(a,b) = 1),
then there exists a c such that

a*c mod b = 1

RSA public key encryption

Have you heard of it?

What does it stand for?

RSA public key encryption

RSA is one of the most popular public key encryption
algorithms in use

RSA = Ron Rivest, Adi Shamir and Leonard Adleman

10/29/15	

10	

RSA public key encryption

1.  Choose a bit-length k
Security increase with the value of k, though so does computation

2.  Choose two primes p and q which can be represented
with at most k bits

3.  Let n = pq and ϕ(n) = (p-1)(q-1)
ϕ() is called Euler’s totient function

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1

5.  Find e such that de mod ϕ(n) = 1
Remember, we know one exists!

RSA public key encryption

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

Given this setup, you can prove that given a number m:

(me)d = med = m (mod n)

What does this do for us, though?

RSA public key encryption

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key

(d, n) (e, n)

RSA encryption/decryption

You have a number m that you want to send encrypted

private key public key

(d, n) (e, n)

encrypt(m) = me mod n (uses the public key)

How does this encrypt the message?

10/29/15	

11	

RSA encryption/decryption

You have a number m that you want to send encrypted

private key public key

(d, n) (e, n)

encrypt(m) = me mod n (uses the public key)

-  Maps m onto some number in the range 0 to n-1
-  If you vary e, it will map to a different number
-  Therefore, unless you know d, it’s hard to know

original m was after the transformation

RSA encryption/decryption

You have a number m that you want to send encrypted

private key public key

(d, n) (e, n)

encrypt(m) = me mod n (uses the public key)

decrypt(z) = zd mod n (uses the private key)

Does this work?

RSA encryption/decryption

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(z) = decrypt(me mod n)

= (me mod n)d mod n

z is some encrypted message

definition of decrypt

= (me)d mod n modular arithmetic

= m mod n (me)d = med = m (mod n)

Did we get the original message?

RSA encryption/decryption

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(z) = decrypt(me mod n)

= (me mod n)d mod n

z is some encrypted message

definition of decrypt

= (me)d mod n modular arithmetic

= m mod n (me)d = med = m (mod n)

If 0 ≤ m < n, yes!

10/29/15	

12	

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = ?
ϕ(n) = ?
d = ?
e = ?

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = ?

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = 3*13 = 39

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = 39
ϕ(n) = ?

10/29/15	

13	

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = 39
ϕ(n) = 2*12 = 24

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = 39
ϕ(n) = 24
d = ?
e = ?

RSA encryption: an example

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

p = 3
q = 13
n = 39
ϕ(n) = 24
d = 5
e = 5

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(10) = ?

encrypt(m) = me mod n

decrypt(z) = zd mod n

10/29/15	

14	

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(10) = 105 mod 39 = 4

encrypt(m) = me mod n

decrypt(z) = zd mod n

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(10) = 105 mod 39 = 4

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(4) = ?

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(10) = 105 mod 39 = 4

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(4) = 45 mod 39 = 10

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(2) = ?

encrypt(m) = me mod n

decrypt(z) = zd mod n

10/29/15	

15	

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(2) = 25 mod 39 = 32 mod 39 = 32

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(32) = ?

RSA encryption: an example

n = 39
d = 5
e = 5

encrypt(2) = 25 mod 39 = 32 mod 39 = 32

encrypt(m) = me mod n

decrypt(z) = zd mod n

decrypt(32) = 325 mod 39 = 2

RSA encryption in practice

For RSA to work: 0 ≤ m < n

What if our message isn’t a number?

What if our message is a number that’s larger than n?

RSA encryption in practice

For RSA to work: 0 ≤ m < n

What if our message isn’t a number?
We can always convert the message into a number
(remember everything is stored in binary already
somewhere!)

What if our message is a number that’s larger than n?

Break it into m sized chunks and encrypt/decrypt those
chunks

10/29/15	

16	

RSA encryption in practice

encrypt(“I like bananas”) =

0101100101011100 … encode as a binary string (i.e. number)

4, 15, 6, 2, 22, … break into multiple < n size numbers

17, 1, 43, 15, 12, … encrypt each number

RSA encryption in practice

decrypt((17, 1, 43, 15, 12, …)) =

0101100101011100 …

decrypt each number 4, 15, 6, 2, 22, …

put back together

“I like bananas” turn back into a string (or whatever
the original message was)

Often encrypt and decrypt just assume sequences
of bits and the interpretation is done outside

