

Admin
 Assignment 6
 4 more assignments:
 - Assignment 7, due 11/135pm
 - Assignment 8, due $11 / 205 \mathrm{pm}$
 - Assignments 9 \& 10, due 12/9 11:59pm

Admin
Assignment 6
4 more assignments:
ם Assignment 7 , due $11 / 135 \mathrm{pm}$
\square Assignment 8 , due $11 / 205 \mathrm{pm}$
\square Assignments 9 \& 10, due 12/9 11:59pm

Encryption

What is it and why do we need it?

Encryption: the basic idea

Encryption uses
Where have you seen encryption used?

Private key encryption

Modular arithmetic

Normal arithmetic:
$\mathrm{a}=\mathrm{b}$
a is equal to b or $a-b=0$

Modular arithmetic:
$a \equiv b(\bmod n)$
$a-b=n * k$ for some integer k or
$\mathrm{a}=\mathrm{b}+\mathrm{n}^{*} \mathrm{k}$ for some integer k or
$a \% n=b \% n$ (where $\%$ is the mod operator)

Modular arithmetic	
Which of these statements are true?	
$12 \equiv 5(\bmod 7)$	
$52 \equiv 92(\bmod 10)$	
$17 \equiv 12(\bmod 6)$	$a-b=n^{*} k$ for some integer k or $\mathrm{a}=\mathrm{b}+\mathrm{n} * \mathrm{k}$ for some integer k or $a \% n=b \% n$ (where $\%$ is the mod operator)
$65 \equiv 33(\bmod 32)$	

Modular arithmetic	
Which of these statements are true?	
$12 \equiv 5(\bmod 7)$	$\begin{aligned} & 12-5=7=1 * 7 \\ & 12 \% 7=5=5 \% 7 \end{aligned}$
$52 \equiv 92(\bmod 10)$	$\begin{aligned} & 92-52=40=4^{*} 10 \\ & 92 \% 10=2=52 \% 20 \end{aligned}$
$17 \equiv 12(\bmod 6)$	$\begin{aligned} & 17-12=5 \\ & 17 \% 6=5 \\ & 12 \% 6=0 \end{aligned}$
$65 \equiv 33(\bmod 32)$	$\begin{aligned} & 65-33=32=1 * 32 \\ & 65 \% 32=1=33 \% 32 \end{aligned}$

Modular arithmetic properties

If: $a \equiv b(\bmod n)$ then: $a \bmod n \equiv b \bmod n(\bmod n)$ More importantly: $\begin{aligned} (a+b) \bmod n & \equiv(a \bmod n)+(b \bmod n)(\bmod n) \\ & \text { and } \\ \left(a^{*} b\right) \bmod n & \equiv(a \bmod n) *(b \bmod n)(\bmod n) \end{aligned}$ What do these say?

Modular arithmetic
Why talk about modular arithmetic and congruence?
How is it useful? Why might it be better than normal
arithmetic?
We can limit the size of the numbers we're dealing
with to be at most n (if it gets larger than n at any
point, we can always just take the result \% n)
The mod operator can be thought of as mapping a
number in the range $0 \ldots$ number-1

GCD
What does GCD stand for?

Greatest Common Divisor
$\operatorname{gcd}(a, b)$ is the largest positive integer that divides
both numbers without a remainder
$\operatorname{gcd}(25,15)=?$

Greatest Common Divisor
$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder
$\qquad \operatorname{gcd}(100,52)=$?

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\begin{gathered}
\operatorname{gcd}(14,63)=? \quad \operatorname{gcd}(7,56)=? \\
\operatorname{gcd}(23,5)=? \quad \operatorname{gcd}(100,9)=? \\
\operatorname{gcd}(111,17)=?
\end{gathered}
$$

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\operatorname{gcd}(100,52)=4
$$

	100	52
	100	
Divisors:	20	52
	20	13
	20	4
	5	2
	4	1
	2	
	1	

Greatest Common Divisor

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is the largest positive integer that divides both numbers without a remainder

$$
\begin{array}{ll}
\operatorname{gcd}(14,63)=7 & \operatorname{gcd}(7,56)=7 \\
\operatorname{gcd}(23,5)=1 & \operatorname{gcd}(100,9)=1
\end{array}
$$

$$
\operatorname{gcd}(111,17)=1
$$

Any observations?
Greatest Common Divisor
When the gad $=1$, the two numbers share no factors/
divisors in common
If $\operatorname{gcd}(a, b)=1$ then a is relatively prime to b
This a weaker condition than primality, since any two
prime numbers are also relatively prime, but not vice
versa

RSA public key encryption

Have you heard of it?

What does it stand for?

Greatest Common Divisor

A useful property:

If two numbers are relatively prime (i.e. $\operatorname{gcd}(a, b)=1$), then there exists a c such that

$$
a * c \bmod b=1
$$

RSA public key encryption
Have you heard of it?
What does it stand for?

RSA public key encryption

RSA is one of the most popular public key encryption algorithms in use

RSA $=$ Ron Rivest, Adi Shamir and Leonard Adleman

```
    RSA public key encryption
    Choose a bit-length k
    Security increase with the value of k, though so does computation
    Choose two primes p and q which can be represented
    with at most k bits
3. Let n= pq and }\varphi(n)=(p-1)(q-1
    \varphi() is called Euler's totient function
4. Find d}\mathrm{ such that }0<d<n\mathrm{ and }\operatorname{gcd}(\textrm{d},\varphi(n))=
Find e such that de mod}\varphi(n)=
    Remember, we know one exists!
```


RSA public key encryption	
$\begin{aligned} & \mathrm{p}: \text { prime number } \\ & \mathrm{q}: \text { prime number } \\ & \mathrm{n}=\mathrm{pq} \end{aligned}$	$\begin{aligned} & \varphi(n)=(p-1)(q-1) \\ & d: \quad 0<d<n \text { and } \operatorname{gcd}(d, \varphi(n))=1 \\ & e: \quad d e \bmod \varphi(n)=1 \end{aligned}$
Given this setup, you can prove that given a number m: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod n)$ What does this do for us, though?	

RSA encryption/decryption	
private key	
(d, n)	public key
(e, $n)$	
You have a number m that you want to send encrypted	
encrypt $(m)=m^{e}$ mod n	(uses the public key)
How does this encrypt the message?	

RSA encryption/decryption	
private key	
(d, n)	public key
(e, $n)$	
You have a number m that you want to send encrypted	
encrypt $(m)=m^{e}$ mod n	(uses the public key)
decrypt $(z)=z^{d}$ mod n	(uses the private key)
Does this work?	

RSA encryption/decryption	
$\begin{aligned} & \text { encrypt }(m)=m^{e} \bmod n \\ & \operatorname{decrypt}(z)=z^{d} \bmod n \end{aligned}$	
$\begin{aligned} \operatorname{decrypt}(z) & =\text { decrypt }\left(m^{e} \bmod n\right) \\ & =\left(m^{e} \bmod n\right)^{d} \bmod n \\ & =\left(m^{e}\right)^{d} \bmod n \\ & =m \bmod n \end{aligned}$ Did we get the original m	z is some encrypted message definition of decrypt modular arithmetic $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod n)$ ge?

RSA encryption/decryption	
$\begin{aligned} & \operatorname{encrypt}(m)=m^{e} \bmod n \\ & \operatorname{decrypt}(z)=z^{d} \bmod n \end{aligned}$	
$\begin{aligned} \text { decrypt(z) }= & \text { decrypt }\left(m^{e} \bmod n\right) \\ = & \left(m^{e} \bmod n\right)^{d} \bmod n \\ = & \left(m^{e}\right)^{d} \bmod n \\ = & m \bmod n \\ & \text { If } 0 \leq m<n, \text { yes! } \end{aligned}$	z is some encrypted message definition of decrypt modular arithmetic $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod n)$

| RSA encryption: an example |
| :--- | :--- |
| p: prime number $\varphi(n)=(p-1)(q-1)$
 $q:$ prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$
 $n=p q$ e: $d e \bmod \varphi(n)=1$ |
| $p=3$
 $q=13$
 $n=?$
 $\varphi(n)=?$
 $d=?$
 $e=?$ |

| RSA encryption: an example
 $p:$ prime number $\varphi(n)=(p-1)(q-1)$
 $q:$ prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$
 $n=p q$ e: de $\bmod \varphi(n)=1$
 $p=3$
 $q=13$
 $n=?$ |
| :--- | :--- |

RSA encryption: an example
p: prime number $\varphi(n)=(p-1)(q-1)$ $q:$ prime number $n=p q$ d: $0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$ $p=3$ $q=13$ $n=3^{*} 13=39$

RSA encryption: an example

p: prime number	$\varphi(n)=(p-1)(q-1)$
q: prime number	$d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$
$n=p q$	e: de $\bmod \varphi(n)=1$

$p=3$
$q=13$
$\mathrm{n}=39$
$\varphi(n)=$?

RSA encryption: an example
p: prime number $\varphi(n)=(p-1)(q-1)$ $q:$ prime number $n=p q$: $0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$ $p=3$ $q=13$ $n=39$ $\varphi(n)=2^{*} 12=24$

RSA encryption: an example	
$p:$ prime number q : prime number $\mathrm{n}=\mathrm{pq}$	$\begin{aligned} & \varphi(n)=(p-1)(q-1) \\ & d: \quad 0<d<n \text { and } \operatorname{gcd}(d, \varphi(n))=1 \\ & \text { e: de } \bmod \varphi(n)=1 \end{aligned}$
$\begin{aligned} & p=3 \\ & q=13 \\ & n=39 \\ & \varphi(n)=24 \\ & d=? \\ & e=? \end{aligned}$	

RSA encryption: an example	
p : prime number q : prime number $\mathrm{n}=\mathrm{pq}$	$\begin{aligned} & \varphi(n)=(p-1)(q-1) \\ & d: \quad 0<d<n \text { and } \operatorname{gcd}(d, \varphi(n))=1 \\ & \text { e: de } \bmod \varphi(n)=1 \end{aligned}$
$\begin{aligned} & p=3 \\ & q=13 \\ & n=39 \\ & \varphi(n)=24 \\ & d=5 \\ & e=5 \end{aligned}$	

RSA encryption: an example

$$
\begin{array}{ll}
n=39 & \text { encrypt }(m)=m^{e} \bmod n \\
d=5 & \operatorname{decrypt}(z)=z^{d} \bmod n \\
e=5 &
\end{array}
$$

encrypt $(10)=$?

RSA encryption: an example	
$\begin{aligned} & n=39 \\ & d=5 \\ & e=5 \end{aligned}$	$\begin{aligned} & \text { encrypt }(m)=m^{e} \bmod n \\ & \operatorname{decrypt}(z)=z^{d} \bmod n \end{aligned}$
$\begin{aligned} & \text { encrypt }(10)=10^{5} \bmod 39=4 \\ & \text { decrypt }(4)=? \end{aligned}$	

RSA encryption: an example

$$
\begin{array}{ll}
n=39 & \text { encrypt }(m)=m^{e} \bmod n \\
d=5 & \text { decrypt }(z)=z^{d} \bmod n \\
e=5 &
\end{array}
$$

encrypt(2) $=$?

RSA encryption: an example

$$
\begin{array}{ll}
n=39 & \text { encrypt }(m)=m^{e} \bmod n \\
d=5 & \text { decrypt }(z)=z^{d} \bmod n \\
e=5 &
\end{array}
$$

$$
\text { encrypt(2) }=2^{5} \bmod 39=32 \bmod 39=32
$$

$$
\text { decrypt(32) }=32^{5} \bmod 39=2
$$

RSA encryption in practice

For RSA to work: $0 \leq m<n$

What if our message isn't a number?

What if our message is a number that's larger than n ?

RSA encryption in practice

For RSA to work: $0 \leq m<n$

What if our message isn't a number?
We can always convert the message into a number (remember everything is stored in binary already somewhere!)

What if our message is a number that's larger than n ? Break it into m sized chunks and encrypt/decrypt those chunks

RSA encryption in practice
decrypt $((17,1,43,15,12, \ldots))=$
$4,15,6,2,22, \ldots$
$0101100101011100 \ldots$
"I like bananas"
Often encrypt each number of bits and the interperether
turn back into a string (or whatever the original message was)

