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ENCRYPTION 
David Kauchak 
CS52 – Spring 2015 

Admin 

Assignment 6 
 

4 more assignments: 
!  Assignment 7, due 11/13 5pm 
!  Assignment 8, due 11/20 5pm 
!  Assignments 9 & 10, due 12/9 11:59pm 

 
 
 

Admin 

Midterm next Thursday 
! Covers everything from 9/24 – 10/27 + some minor 

SML 
! Will not have to write any assembly 
! 2 pages of notes 
! Review sessions next week (TBA) 

 
 

Encryption 

What is it and why do we need it? 



10/29/15	  

2	  

Encryption 

I like 
bananas 

Encryption 

I like 
bananas 

Encryption: a bad attempt 

I like 
bananas 

Encryption: the basic idea 

I like 
bananas 

encrypt m
essage 

send encrypted message 

de
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I like 
bananas 
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Encryption: a better approach 

the hawk sleeps 
at midnight 

Encryption uses 

Where have you seen encryption used? 

Encryption uses Private key encryption 

I like 
bananas 

encrypt m
essage 

send encrypted message 
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I like 
bananas 
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Private key encryption 

Any problems with this? 

Private key encryption 

Private key encryption 

? 

Public key encryption 

private key public key 

Two keys, one you make publicly 
available and one you keep to yourself 
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Public key encryption 

Share your public key with everyone 

Public key encryption 

I like 
bananas 

encrypt m
essage 

send encrypted message 
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I like 
bananas 

Public key encryption 

de
cr

yp
t m

es
sa

ge
 

I like 
bananas 

Only the person with the 
private key can decrypt! 

Modular arithmetic 

Normal arithmetic: 
a = b 
a is equal to b or a-b = 0 

Modular arithmetic: 
a     b (mod n)  
a-b = n*k for some integer k or 
a = b + n*k for some integer k or 
a % n = b % n (where % is the mod operator) 
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Modular arithmetic 

Which of these statements are true? 

12 5 (mod 7) 

52 92 (mod 10) 

17 12 (mod 6) 

65 33 (mod 32) 

a-b = n*k for some integer k or 
a = b + n*k for some integer k or 
a % n = b % n (where % is the mod operator) 

Modular arithmetic 

Which of these statements are true? 

12 5 (mod 7) 

52 92 (mod 10) 

17 12 (mod 6) 

65 33 (mod 32) 

12-5    = 7  = 1*7 
12 % 7 = 5 = 5 % 7 

92-52    = 40  = 4*10 
92 % 10 = 2   = 52 % 20 

65-33    = 32  = 1*32 
65 % 32 = 1   = 33 % 32 

17-12   = 5  
17 % 6 = 5 
12 % 6 = 0  

Modular arithmetic properties 

a b (mod n) 
If: 

a mod n b mod n (mod n) 
then: 

“mod”/remainder operator congruence (mod n) 

Modular arithmetic properties 

a b (mod n) 
If: 

a mod n b mod n (mod n) 
then: 

More importantly: 

(a+b) mod n    (a mod n) + (b mod n)  (mod n)  

(a*b) mod n     (a mod n) * (b mod n)  (mod n)  

and 

What do these say? 
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Modular arithmetic 

Why talk about modular arithmetic and congruence?  
How is it useful? Why might it be better than normal 
arithmetic? 
 
We can limit the size of the numbers we’re dealing 
with to be at most n (if it gets larger than n at any 
point, we can always just take the result % n) 
 
The mod operator can be thought of as mapping a 
number in the range 0 … number-1 
 

GCD 

What does GCD stand for? 

Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(25, 15) = ? 

Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(25, 15) = 5 

25 

25 
5 
1 

Divisors: 

15 

15 
5 
3 
1 
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Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(100, 52) = ? 

Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(100, 52) = 4 

100 
100 

50 
25 
20 
10 
5 
4 
2 
1 

Divisors: 

52 

52 
13 
4 
2 
1 

Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(100, 9) = ? gcd(23, 5) = ? 

gcd(7, 56) = ? gcd(14, 63) = ? 

gcd(111, 17) = ? 

Greatest Common Divisor 

gcd(a, b) is the largest positive integer that divides 
both numbers without a remainder 

gcd(100, 9) = 1 gcd(23, 5) = 1 

gcd(7, 56) = 7 gcd(14, 63) = 7 

gcd(111, 17) = 1 

Any observations? 
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Greatest Common Divisor 

When the gcd = 1, the two numbers share no factors/
divisors in common 
 
If gcd(a,b) = 1 then a is relatively prime to b 
 
This a weaker condition than primality, since any two 
prime numbers are also relatively prime, but not vice 
versa 

Greatest Common Divisor 

A useful property: 
 
If two numbers are relatively prime (i.e. gcd(a,b) = 1), 
then there exists a c such that 
 
 
 

a*c mod b = 1   

RSA public key encryption 

Have you heard of it? 
 
What does it stand for? 

RSA public key encryption 

RSA is one of the most popular public key encryption 
algorithms in use 
 
RSA = Ron Rivest, Adi Shamir and Leonard Adleman 
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RSA public key encryption 

1.  Choose a bit-length k 
Security increase with the value of k, though so does computation 
 

2.   Choose two primes p and q which can be represented 
with at most k bits 

3.  Let n = pq and ϕ(n) = (p-1)(q-1) 
ϕ() is called Euler’s totient function 
 

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1 

5.  Find e such that de mod ϕ(n) = 1 
Remember, we know one exists! 

RSA public key encryption 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

Given this setup, you can prove that given a number m: 

(me)d = med = m (mod n) 

What does this do for us, though? 

RSA public key encryption 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key 

(d, n) (e, n) 

RSA encryption/decryption 

You have a number m that you want to send encrypted 

private key public key 

(d, n) (e, n) 

encrypt(m) = me mod n (uses the public key) 

How does this encrypt the message? 
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RSA encryption/decryption 

You have a number m that you want to send encrypted 

private key public key 

(d, n) (e, n) 

encrypt(m) = me mod n (uses the public key) 

-  Maps m onto some number in the range 0 to n-1 
-  If you vary e, it will map to a different number 
-  Therefore, unless you know d, it’s hard to know 

original m was after the transformation 

RSA encryption/decryption 

You have a number m that you want to send encrypted 

private key public key 

(d, n) (e, n) 

encrypt(m) = me mod n (uses the public key) 

decrypt(z) = zd mod n (uses the private key) 

Does this work?  

RSA encryption/decryption 

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(z) =  decrypt(me mod n) 

= (me mod n)d mod n 

z is some encrypted message 

definition of decrypt 

= (me)d mod n modular arithmetic 

= m mod n (me)d = med = m (mod n) 

Did we get the original message? 

RSA encryption/decryption 

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(z) =  decrypt(me mod n) 

= (me mod n)d mod n 

z is some encrypted message 

definition of decrypt 

= (me)d mod n modular arithmetic 

= m mod n (me)d = med = m (mod n) 

If 0 ≤ m < n, yes! 
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RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = ? 
ϕ(n) = ? 
d = ? 
e = ? 

RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = ? 

RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = 3*13 = 39 

RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = 39 
ϕ(n) = ? 
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RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = 39 
ϕ(n) = 2*12 = 24 

RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = 39 
ϕ(n) = 24 
d = ? 
e = ? 

RSA encryption: an example 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

p = 3 
q = 13 
n = 39 
ϕ(n) = 24 
d = 5 
e = 5 

RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(10) = ? 

encrypt(m) = me mod n 

decrypt(z) = zd mod n 
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RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(10) = 105 mod 39 = 4   

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(10) = 105 mod 39 = 4   

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(4) = ? 

RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(10) = 105 mod 39 = 4   

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(4) = 45 mod 39 = 10  

RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(2) = ? 

encrypt(m) = me mod n 

decrypt(z) = zd mod n 
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RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(2) = 25 mod 39 = 32 mod 39 = 32    

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(32) = ? 

RSA encryption: an example 

n = 39 
d = 5 
e = 5 

encrypt(2) = 25 mod 39 = 32 mod 39 = 32    

encrypt(m) = me mod n 

decrypt(z) = zd mod n 

decrypt(32) = 325 mod 39 = 2  

RSA encryption in practice 

For RSA to work: 0 ≤ m < n 

What if our message isn’t a number? 
 
What if our message is a number that’s larger than n? 

RSA encryption in practice 

For RSA to work: 0 ≤ m < n 

What if our message isn’t a number? 
We can always convert the message into a number 
(remember everything is stored in binary already 
somewhere!) 

 
What if our message is a number that’s larger than n? 

Break it into m sized chunks and encrypt/decrypt those 
chunks 
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RSA encryption in practice 

encrypt(“I like bananas”) =  

0101100101011100 … encode as a binary string (i.e. number) 

4, 15, 6, 2, 22, … break into multiple < n size numbers  

17, 1, 43, 15, 12, … encrypt each number 

RSA encryption in practice 

decrypt((17, 1, 43, 15, 12, …)) =  

0101100101011100 … 

decrypt each number 4, 15, 6, 2, 22, … 

put back together 

“I like bananas” turn back into a string (or whatever 
the original message was) 

Often encrypt and decrypt just assume sequences 
of bits and the interpretation is done outside 


