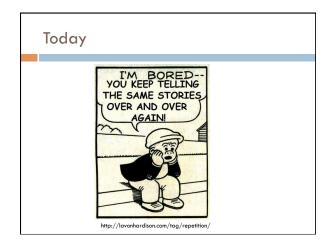


Admin Assignment 6 Assignment 4 grading 100 vs. 300 stack size name missing



List induction 1. State what you're trying to prove! 2. State and prove the base case (often empty list) 3. Assume it's true for sublists — inductive hypothesis 4. Show that it holds for the full list

List fact len (map f lst) = len lst What does this say? Does it make sense?

```
Base case: |st = []
Want to prove: |st = []

Proof?

Prove: |st = []

Prove: |st = []

Prove: |st = []

|st = []
```

```
Base case: |st| = []

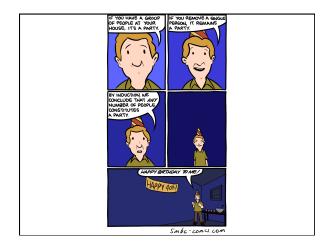
Want to prove: |st| = []

definition of map!

Prove: |st| = []

Prove: |st| = []

|st| = [
```



```
1. []@v1 = v1
2. u1@[] = u1
3. (u1@v1)@w1 = u1@(v1@w1)
4. [u]@us = u::us
```

Another list fact

len (xlst @ ylst) = len xlst + len ylst

What does this say? Does it make sense?

```
1. []@v1 = v1
2. u1@[] = u1
3. (u1@v1)@w1 = u1@(v1@w1)
4. [u]@us = u::us

Prove: len (xlst @ ylst) = len xlst + len ylst

1. State what you're trying to prove!
2. State and prove the base case (often empty list)
3. Assume it's true for smaller lists - inductive hypothesis
4. Show that it holds for the current list
```

```
Base case: x|st = []

Want to prove: len ([] @ y|st) = len [] + len y|st

Proof?

Prove: len (x|st @ y|st) = len x|st + len y|st

1. []@v1 = v1
2. u1@[] = u1
3. (u1@v1)@w1 = u1@(v1@w1)
4. [u]@us = u::us

fun len [] = 0
| len (x::xs) = 1 + len xs
```

```
Base case: xlst = []

Want to prove: len ([] @ ylst) = len [] + len ylst

len ([] @ ylst) = ... = len [] + len ylist

1. start with left hand side
2. show a set of justified steps that derive the right hand size

Prove: len (xlst @ ylst) = len xlst + len ylst

1. []@v1 = v1
2. u1@[] = u1
3. (u1@v1)@w1 = u1@(v1@w1) fun len [] = 0
1. len (x::xs) = 1 + len xs
```

```
Base case: xlst = []

Want to prove: len ([] @ ylst) = len [] + len ylst

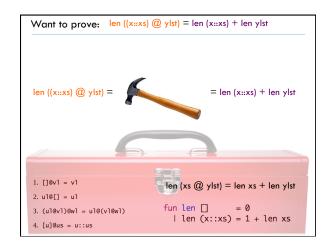
len ([] @ ylst) = len ylst fact 1

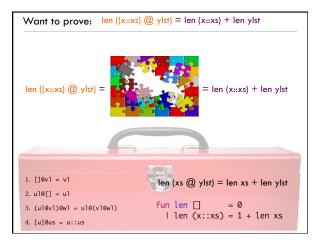
= 0 + len ylst math

= len [] + len ylst definition of len

Prove: len (xlst @ ylst) = len xlst + len ylst

1. []@v1 = v1
2. ul@[] = ul
3. (ul@v1)@w1 = ul@(vl@w1) fun len [] = 0
1. len (x::xs) = 1 + len xs
```





```
Inductive hypothesis: len (xs @ ylst) = len xs + len ylst
Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst
len ((x::xs) @ ylst) = len ( ([x]@xs) @ ylst )
                    = len ( [x] @ (xs @ ylst) )
                                                     fact 3
                    = len ( x :: (xs @ ylst) )
                    = 1 + len (xs @ ylst)
                                                     definition of len
                    = 1 + len xs + len ylst
                                                     inductive hypothesis
                     = len (x::xs) + len ylst
                                                     definition of len
1. []@v1 = v1
2. u1@[] = u1
                                    fun len [] = 0
| len (x::xs) = 1 + len xs
3. (ul@vl)@wl = ul@(vl@wl)
4. [u]@us = u::us
```

```
fun cart [] _ = []
| cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

What does the anonymous function do?
```

```
fun cart [] _ = []
| cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

Takes a value, x, and creates
a tuple with u as the first
element and x as the second
```

Blast from the past

```
fun cart [] _ = [] | cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

What does the map part of this function do?
```

Blast from the past

```
fun cart [] _ = []
I cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

For each element in vl, creates a tuple (pair) with u as the first element and an element of vl as the second
```

Blast from the past

```
fun cart [] _ = []
| cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

What is the type signature?
What does this function do?
```

Blast from the past

```
fun cart [] _ = []
| cart (u::us) vl = (map (fn x ⇒ (u,x)) vl) @ (cart us vl);

4. [2 points] Write a function cartesian that takes two lists and forms a list of all the ordered pairs, with one element from the first list and one from the second. For example, cartesian [1,3,5] [2,4] will return [(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)].
```

cartesian : 'a list -> 'b list -> ('a * 'b) list

Name the actor and movi

Blast from the past

A property of cart

A property of cart

```
fun cart [] _ = []
| cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);
```

Prove: len(cart ul vl) = (len ul) * (len vl)

Proof by induction. Which variable, ul or vl?

```
ulst = []
Base case:
Want to prove: len (cart [] vl) = (len []) * (len vl)
  len (cart [] vI) = len []
                                     definition of cart
               = 0
                                     definition of len
                = 0 * (len vl)
                = (len []) * (len vl) definition of len
 Prove: len(cart ul vl) = (len ul) * (len vl)
1. []@v1 = v1
                                fun len [] = 0
| len (x::xs) = 1 + len xs
2. u1@[] = u1
3. (ul@vl)@wl = ul@(vl@wl)
                      4. [u]@us = u::us
```

```
Want to prove: len (cart (u::us) vI) = (len (u::us)) * (len vI)
                                                                     definition of cart
len (cart (u::us) vl) = len (map (fn x => (u,x)) vl) @ (cart us vl))
                     = len (map (fn x => (u,x)) vl)) + len (cart us vl) "@" fact
                     = len (vl) + len(cart us vl)
                                                            "map" fact
                     = len (vl) + (len us) * (len vl)
                                                           inductive hypothesis
                     = (1 + (len us)) * (len vl)
                                                            math
                     = (len (u::us)) * (len vl)
                                                           definition of len
len (map f xlst) = len xlst
len (xlst @ ylst) = len xlst + len ylst
                                       IH: len (cart us vI) = (len us) * (len vI)
1. []@v1 = v1
                                        fun len 🗌
2. u1@[] = u1
                                         | len (x::xs) = 1 + len xs
3. (ul@vl)@wl = ul@(vl@wl)
                           fun cart ☐ _ = ☐ 
| cart (u::us) vl = (map (fn x ⇒> (u,x)) vl) @ (cart us vl);
4. [u]@us = u::us
```

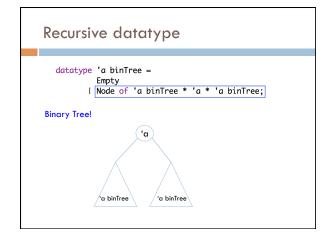
```
datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;

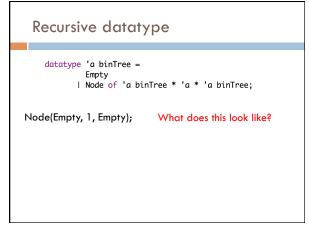
- Defines a type variable for use in the datatype constructors
- Still just defines a new type called "binTree"
```

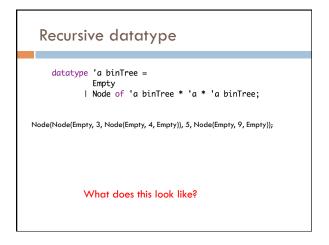
```
Recursive datatype

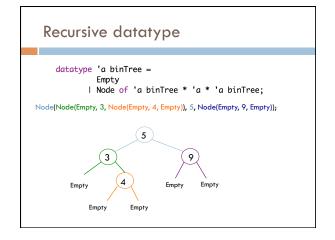
datatype 'a binTree =
Empty
Node of 'a binTree * 'a * 'a binTree;

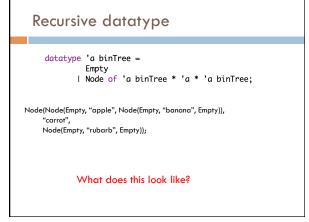
What is this?
```

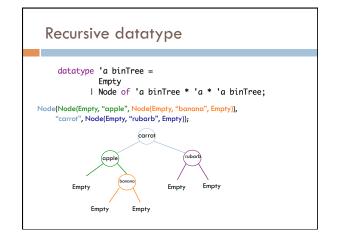


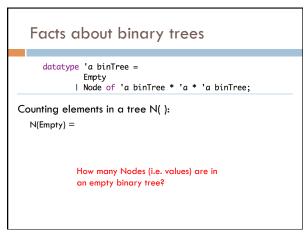












Facts about binary trees

```
datatype 'a binTree =
             Empty
| Node of 'a binTree * 'a * 'a binTree;
Counting elements in a tree N( ):
```

N(Empty) = 0

Facts about binary trees

```
datatype 'a binTree =
    Empty
    I Node of 'a binTree * 'a * 'a binTree;
Counting elements in a tree N( ):
  N(Empty)
  N(Node(u, elt, v)) =
               How many Nodes (i.e. values) are in
               non-empty binary tree (stated
               recursively)?
```

Facts about binary trees

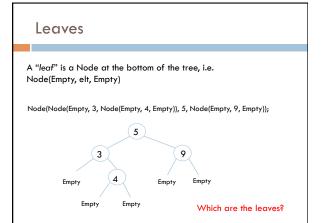
```
datatype 'a binTree =
       Empty
| Node of 'a binTree * 'a * 'a binTree;
```

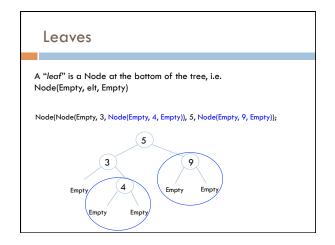
Counting elements in a tree N():

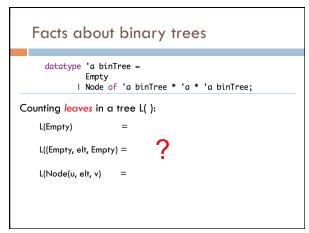
N(Empty)

N(Node(u, elt, v)) = 1 + N(u) + N(v)

One element stored in this node plus the nodes in the left tree and the nodes in the right tree







```
Facts about binary trees

datatype 'a binTree = Empty
| Node of 'a binTree * 'a * 'a binTree;

Counting leaves in a tree L():
L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)
```

```
Facts about binary trees

datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;

Counting Emptys in a tree E( ):
E(Empty) =
E(Node(u, elt, v) =
```

Facts about binary trees

```
datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;

Counting Emptys in a tree E( ):
E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)
```

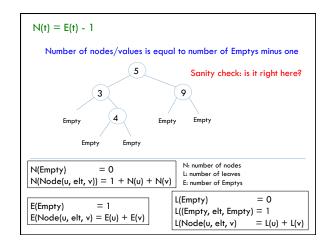
Notation summarized

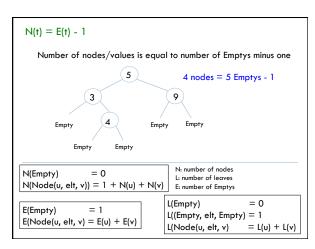
- □ N(): number of elements/values in the tree
- □ L(): number of leaves in the tree
- □ E(): number of Empty nodes in the tree

Tree induction

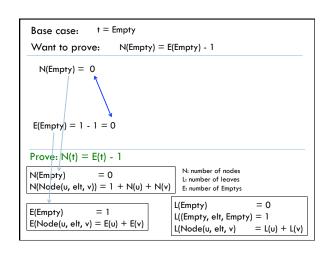
- 1. State what you're trying to prove!
- State and prove the base case(s) (often Empty and/or Leaf)
- 3. Assume it's true for smaller subtrees inductive hypothesis
- 4. Show that it holds for the full tree

```
N(t) = E(t) - 1
What is this saying in English?
N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)
N(Node(u, elt, v)) = 1 + N(u) + N(v)
N(t) = 0
N(t) =
```



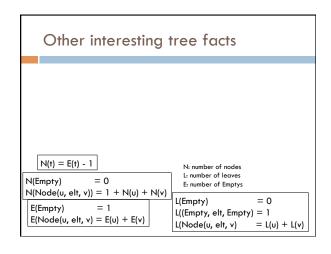


```
Base case: t = Empty
Want to prove:
                        N(Empty) = E(Empty) - 1
                           Proof?
Prove: N(t) = E(t) - 1
                                         N: number of nodes
L: number of leaves
E: number of Emptys
N(Empty)
N(Node(u, elt, v)) = 1 + N(u) + N(v)
                                        L(Empty)
                                                              = 0
E(Empty)
                  = 1
                                        L((Empty, elt, Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)
                                       L(Node(u, elt, v)
                                                             = L(v) + L(v)
```

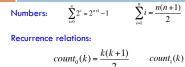


```
Inductive hypotheses: N(u) = E(u) - 1
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
(Relation holds for any subtree)
N(v) = E(v) - 1
```

```
Want to prove: N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1
N(Node(u, elt, v)) = 1 + N(u) + N(v)
                    = 1 + E(v) - 1 + E(v) - 1
                                                      inductive hypothesis
                    = E(v) + E(v) - 1
                                                      math
                                                      "E" fact
                     = E(Node(u, elt, v)) - 1
       N(u) = E(u) - 1
       N(v) = E(v) - 1
                                           N: number of nodes
                                           L: number of leaves
E: number of Emptys
N(Empty)
                  = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)
                                         L(Empty)
                                                                = 0
E(Empty)
                   = 1
                                         L((Empty, elt, Empty) = 1
 E(Node(u, elt, v) = E(u) + E(v)
                                         L(Node(u, elt, v)
                                                               = L(v) + L(v)
```



Summary of induction proofs



 $count_1(k) = 2^{k+1} - k - 2$

Code equivalence:

fibrec(n) = fibiter(n)

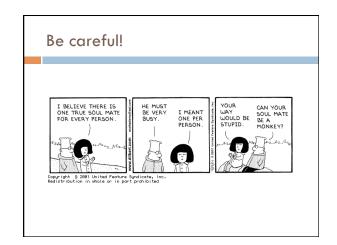
Induction on lists: len (map f xlst) = len xlst

len (xlst @ ylst) = len xlst + len ylst

 $\mathsf{len}(\mathsf{cart}\;\mathsf{ul}\;\mathsf{vl}) = (\mathsf{len}\;\mathsf{ul})\; *\; (\mathsf{len}\;\mathsf{vl})$

Induction on trees:

N(t) = E(t) - 1



Outline for a "good" proof by induction

- 1. Prove: what_to_prove
- 2. Base case: the_base_case(s) step by step proof with each step clearly justified
- 3. Assuming: the_inductive_hypothesis
- 4. Show: what_you're_trying_to_prove step by step proof with each step clearly justified