

Admin
Assignment 5
Assignment 6: due Monday (11/2 at 11:59pm)
Start on time ©
Academic honesty

member
fun member -[] I member $\mathrm{e}(\mathrm{x}:: \mathrm{xs})=$ $=$ false $=\mathrm{e}=\mathrm{x}$ orelse (member e xs); What is it's type signature? What does it do?

member

```
fun member _ [] = false
    | member e (x::xs) = e=x orelse (member e xs);
    'a -> 'a list -> bool
Determines if the first argument is in the second argument
```

member
fun member -[]$\quad=$ false I member $\mathrm{e}(\mathrm{x}:: \mathrm{xs})=\mathrm{e}=\mathrm{x}$ orelse (member e xs); How fast is it? For a list with k elements in it, how many calls are made to member? Depends on the input!

member
fun member -[] I member $\mathrm{e}(\mathrm{x}:: \mathrm{xs})$ $=$ $=\mathrm{e}=\mathrm{x}$ orelse (member e xs); How will the run-time grow as the list size increases? Linearly: - for each element we add to the list, we'll have to make one more recursive call
doubling the size of the list would roughly double
the run-time

member
fun member _ [] \quad false
I member e (x::xs) = e=x orelse (member e xs);

For a list with k elements in it, how many calls are made to member in the worst case?

Worst case is when the item doesn't exist in the list $k+1$ times:

- each element will be examined one time ($2^{\text {nd }}$ pattern)
- plus one time for the empty list

Uniquify
fun uniquify0 [] = []
I uniquify0 (x::xs) = if member x xs then uniquify0 xs Type signature? else x::(uniquify0 xs);

What do they do?
The image cannot be displayed. Your computer may The image cannot be displayed. Your compue, may
not have enough memory to open the image or the
image may have been corrupted. Restart your mage may have been corrupted. Restart your
computer, and then open the file again. If the computer, and then open the file again, If the red x
still appears, you may have to delete the image and hen insert it again

Which is faster?

How much faster?

uniquify0

```
fun uniquify0 [] = []
    | uniquify0 (x::xs) =
        if member x xs
            then uniquify0 xs
            else x::(uniquify0 xs);
```


Recursive case:

Let count ${ }_{0}(i)$ be the number of calls that uniquify 0 makes to member for a list of size i.

Can you define the number of calls for a list of size k (count (k))? Hint: the definition will be recursive?

Recurrence relation
$\operatorname{count}_{0}(k)=\left\{\begin{array}{cc|}0 & \text { if, } k=0 \\ k+\operatorname{count}_{0}(k-1) & \text { otherwise }\end{array}\right.$
How many calls is this?

Recurrence relation	
$\operatorname{count}_{0}(k)$	$=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\operatorname{count}_{0}(k-1) & \text { otherwise }\end{array}\right.$
$\operatorname{count}_{0}(k)=k+\operatorname{count}(k-1)$	
$=$	$k+k-1+\operatorname{count}_{0}(k-2)$
$=$	$k+k-1+k-2+\operatorname{count}_{0}(k-3)$
$=$	$k+k-1+k-2+\ldots+1+\operatorname{count}_{0}(0)$
$=$	$k+k-1+k-2+\ldots+1+0$

Recurrence relation

$\operatorname{count}_{0}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\text { count }_{0}(k-1) & \text { otherwise }\end{array}\right.$
$\operatorname{count}_{0}(k)=\frac{k(k+1)}{2} \approx \frac{k^{2}}{2} \quad$ calls to member

Can you prove this?

Proof by induction
1. State what you're trying to prove! 2. State and prove the base case What is the smallest possible case you need to consider? Should be fairly easy to prove 3. Assume it's true for k (or $k-1$). Write out specifically what this assumption is (called the inductive hypothesis). 4. Prove that it then holds for $k+1$ (or k) a. State what you're trying to prove (should be a variation on step 1) b. Prove it. You will need to use inductive hypothesis.

Proof by induction! $\operatorname{count}_{0}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\operatorname{count}_{0}(k-1) & \text { otherwise }\end{array}\right.$

1. $\operatorname{count}_{0}(k)=\frac{k(k+1)}{2}$
2. base case?
3. $\operatorname{count}_{0}(k)=\frac{k(k+1)}{2} \quad \operatorname{count}_{0}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\text { count }_{0}(k-1) & \text { otherwise }\end{array}\right.$
4. assume: $\operatorname{count}_{0}(k-1)=\quad$ inductive hypothesis
5. $\operatorname{count}_{0}(k)=\frac{k(k+1)}{2} \quad \operatorname{count}_{0}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\operatorname{count}_{0}(k-1) & \text { otherwise }\end{array}\right.$
6. assume: $\operatorname{count}_{0}(k-1)=\frac{(k-1) k}{2} \quad$ inductive hypothesis
7. $\operatorname{count}_{0}(k)=\frac{k(k+1)}{2} \quad \operatorname{count}_{0}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+\operatorname{count}_{0}(k-1) & \text { otherwise }\end{array}\right.$
8. assume: $\operatorname{count}_{0}(k-1)=\frac{(k-1) k}{2} \quad$ inductive hypothesis
9. prove: $\operatorname{count}_{0}(k)=\frac{k(k+1)}{2}$
$\operatorname{count}_{0}(k)=k+\operatorname{count}_{0}(k-1) \quad$ by definition of count ${ }_{0}$ $=k+\frac{(k-1) k}{2}$

$$
=\frac{2 k+k^{2}-k}{2} \quad \operatorname{math}(\mathrm{k}=2 \mathrm{k} / 2 \text {, multiply }(\mathrm{k}-1) \mathrm{k})
$$

uniquify 1
fun uniquify1 nil $=n i l$
| uniquify1 (x::xs) =
if member x (uniquify1 $x s$) then uniquify1 xs else $x:$:(uniquify1 $x s$);
What is the recurrence relation for calls to member
for uniquify 1 ? Write a recursive function called count ${ }_{1}$ that gives the number of calls to member for a list of size k .
$\operatorname{count}_{1}(k)=\left\{\begin{array}{c}\text { if, } k=0 \\ \text { otherwise }\end{array}\right.$

How many calls is that?
$\operatorname{count}_{1}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+2 * \operatorname{count}_{1}(k-1) & \text { otherwise }\end{array}\right.$
| claim: $\operatorname{count}_{1}(k)=2^{k+1}-k-2$

Can you prove it?

Proof by induction! $\operatorname{count}_{1}(k)=\left\{\begin{array}{cc}0 & \text { if, } k=0 \\ k+2 * \operatorname{count}_{1}(k-1) & \text { otherwise }\end{array}\right.$

1. $\operatorname{count}_{1}(k)=2^{k+1}-k-2$
2. Base case: $\mathrm{k}=0$
$\operatorname{count}_{1}(k)=0$
from definition of count ${ }_{1}$
$\operatorname{count}_{1}(k)=$
what we're trying to prove

Proof by induction! ${ }^{\text {count }}(k)=\left\{\begin{array}{cc}0 & \text { if }, k=0 \\ k+2 * \operatorname{count}_{1}(k-1) & \text { otherwise }\end{array}\right.$

1. count $_{1}(k)=2^{k+1}-k-2$
2. assume: $\quad \operatorname{count}_{1}(k-1)=2^{k}-(k-1)-2$
inductive hypothesis

$$
=2^{k}-k-1
$$

Does it matter?								
$\operatorname{count}_{0}(k)=\frac{k(k+1)}{2}$			count $_{1}(k)=2^{k+1}-k-2$					
k	0	1	2	3	4	\ldots	10	\ldots

Maybe it's not that bad
2.5×10^{30} calls to member for a list of size 100

Roughly how long will that take?

In practice

On my laptop, starts to slow down with lists of length 22 or so

Undo
fun uniquify1 nil = nil
| uniquify1 (x::xs) =
if member x (uniquify1 $x s$)
then uniquify1 xs
else x::(uniquify1 xs);
fun uniquify2 nil = nil
I unic
val recResult $=$ uniquifyz xs ;
in
if member x recResult
then recResult else x : :recResult
end;
then uniquifyo xs
else x ::(uniquifyo xs);
fun uniquify2 nil $=$ nil
| uniquify2 ($\mathrm{x}:$:xs) $=$
,
in
if member x recResult
then reckesult
end;

Big O: Upper bound

$O(g(n))$ is the set of functions:
$O(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right\}$

$O(g(n))$ is the set of functions:
$O(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n)\end{array}\right\} . f \text { for all } n \geq n_{0}\end{array}\right\}$

We can bound the function $f(n)$ above by some constant factor of $g(n)$: constant factors don't matter!

Big O: Upper bound
$O(g(n))$ is the set of functions:
$O(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

We can bound the function $f(n)$ above by some constant factor of $g(n)$: constant factors don't

For some increasing range: we're interested in long-term growth matter!

Runtime examples						
	n	$n \log n$	n^{2}	n^{3}	2^{n}	n !
$n=10$	$<1 \mathrm{sec}$	<1 sec	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	<1 sec	4 sec
$n=30$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<18 \mathrm{~min}$	10^{25} years
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	1 s	10^{17} years	very long
$n=1000$	$<1 \mathrm{sec}$	<1 sec	1 sec	18 min	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long
(adapted from [2], Table 2.1, pg. 34)						

Some examples
O(1) - constant. Fixed amount of work, regardless of
the input size
\square add two 32 bit numbers
\square determine if a number is even or odd
\square sum the first 20 elements of an array
\square delete an element from a doubly linked list
O(log n) - logarithmic. At each iteration, discards
some portion of the input (i.e. half)
\square binary search

Some examples

$\mathrm{O}\left(n^{2}\right)$ - quadratic. Double nested loops that iterate over the data
\square Insertion sort
$O\left(2^{n}\right)$ - exponential
\square Enumerate all possible subsets
\square Traveling salesman using dynamic programming
$\mathrm{O}(\mathrm{n}!)$

- Enumerate all permutations
\square determinant of a matrix with expansion by minors

Some examples

$O(n)$ - linear. Do a constant amount of work on each element of the input
\square find an item in an array (unsorted) or linked list
\square determine the largest element in an array
$O(n \log n) \log$-linear. Divide and conquer algorithms with a linear amount of work to recombine

- Sort a list of number with MergeSort
- FFT

An aside

My favorite thing in python!

What do these functions do?
```def fibrec(n): if n<= 1: return 1 else: return fibrec(n-2) + fibrec(n-1) def fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1```



Runtime
def fibiter $(n):$   prev2, prev1 $=0,1$   for $i$ in range $n):$   prev2, prev1 $=$ prev1, (prev1 + prev2 $)$   return prev1
O(n) - linear
Informal justification:
The for loop does $n$ iterations and does just a constant amount of
work for each iteration. An increase in $n$ will see a corresponding
increase in the number of iterations.



Runtime
def fibrec( $n$ ):
if $\mathrm{n}<=1$ :
return 1
else:
return fibrec $(n-2)+\operatorname{fibrec}(n-1)$

Guess: $O\left(2^{n}\right)$ - for each call, makes two recursive calls

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if, } n \leq 1 \\
1+f(n-2)+f(n-1) & \text { otherwise }
\end{array}\right.
$$

Slightly different than the recurrence relation for uniquify 1.

## Proof

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if, } n \leq 1 \\
1+f(n-2)+f(n-1) & \text { otherwise }
\end{array}\right.
$$

We want to prove that $f(n)$ is $O\left(2^{n}\right)$

Show that $f(n) \leq 2^{n}-1$

Why is this sufficient?
$O(g(n))=\left\{\begin{array}{ll}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right\}$

Proof
$f(n)=\left\{\begin{array}{cc}1 & \text { if, } n \leq 1 \\ 1+f(n-2)+f(n-1) & \text { otherwise }\end{array}\right.$
We want to prove that $f(n)$ is $\mathrm{O}\left(2^{n}\right)$
Show that $\mathrm{f}(\mathrm{n}) \leq 2^{\mathrm{n}}$ - 1
$\mathrm{f}(\mathrm{n}) \leq 2^{\mathrm{n}}-1 \leq 2^{\mathrm{n}}(\mathrm{c}=1$, for all $\mathrm{n} \geq 0)$
$O(g(n))= \begin{cases}f(n): & \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{cases}$

Proof

$$
f(n)=\left\{\begin{array}{cc}1 & \text { if, } n \leq 1 \\
1+f(n-2)+f(n-1) & \text { otherwise }\end{array}\right.
$$

We want to prove that $f(n)$ is $O\left(2^{n}\right)$

Show that $f(\mathrm{n}) \leq 2^{n}-1$$\quad$| How do we prove this? $\quad$ Induction! |
| :--- |
| $O(g(n))=\left\{\begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\right\}$ |



Proof by induction $f(n)=\left\{\begin{array}{cc}1 & \text { if, } n \leq 1 \\ 1+f(n-2)+f(n-1) & \text { otherwise }\end{array}\right.$

1. Prove: $f(n) \leq 2^{n}-1$
2. Inductive hypothesis:

Assume: $\quad f(n) \leq 2^{n}-1$
4. Prove:
$\mathrm{n}+1: \quad f(n+1) \leq 2^{n+1}-1$

Proof by induction $\quad f(n)=\left\{\begin{array}{cc}1 & \begin{array}{c}\text { if, } n \leq 1 \\ \text { Assume: } \\ 1+f(n-2)+f(n-1)\end{array} \\ \text { otherwise }\end{array}\right.$
definition of $f(n) \leq 2^{n}-1 \quad$ Prove: $f(n+1) \leq 2^{n+1}-1$
$f(n+1)=1+f(n-1)+f(n) \leq f(n-1)+2^{n}-1 \quad$ What do we do with?



Proof by induction $f(n)=\left\{\begin{array}{cc}1 & \text { if, } n \leq 1 \\ 1+f(n-2)+f(n-1) & \text { otherwise }\end{array}\right.$

1. Prove: $f(n) \leq 2^{n}-1$
2. Inductive hypothesis:

Assume: $\quad f(n) \leq 2^{n}-1$

$$
f(n-1) \leq 2^{n-1}-1 \quad \text { strong induction }
$$

## 4. Prove:

$$
\mathrm{n}+1: \quad f(n+1) \leq 2^{n+1}-1
$$

Proving exponential runtime
$O(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$
We proved that $f(n)$ is $O\left(2^{n}\right)$

Is this sufficient to prove that $f(n)$ takes an exponential amount of time?

No. This is only an upper bound!
Most of the time, this is what we're worried about, talking about bounding the running time of our algorithm, i.e. no worse than.


```
Proving correctness
 def fibrec(n):
 if n <= 1:
 return 1
 else:
 return fibrec(n-2) + fibrec(n-1)
 def fibiter(n):
 prev2, prev1 = 0,1
 for i in range(n):
 prev2, prev1 = prev1, (prev1 + prev2)
 return prev1
```


## Proving correctness

```
def fibrec(\(n\)):
neturn
else:
eturn fibrec \((n-2)+\operatorname{fibrec}(n-1)\)
def fibiter(\(n\)):
for \(i\) in range(\(n\)):
prev2, prev1 = prev1, (prev1 + prev2)
return prev1
```

Can you prove that these two functions give the same result, i.e. that fibrec $(n)=$ fibiter $(n)$ ?

## ENDNOTE

This is the end of the proof that I didn't cover in class

Prove it! fibrec(n) = fibiter(n)

1. State what you're trying to prove!
2. State and prove the base case(s)
3. Assume it's true for all values $\leq k$
4. Show that it holds for $k+1$
def fibrec( $n$ ):
if $n<=1$ :
return 1
else:
return fibrec $(n-2)+\operatorname{fibrec}(n-1)$
def fibiter( $n$ )
prev2, $\operatorname{prev} 1=0,1$
for $i$ in range( $n$ ):
prev2, prev1 = prev1, (prev1 + prev2)
return prev1


Base cases	fibrec( n ) $=$ fibiter( n )
def fibiter $(n)$ :   prev2, prev1 $=0,1$   for $i$ in range( $n$ ):   prev2, prev1 = prev1, $($ prev1 + prev2 $)$   return prev1	```def fibrec(n): \\ if \(n<=1\) :``` $\qquad$   ```return fibrec \((n-2)+\operatorname{fibrec}(n-1)\)```
$\mathrm{n}=0 \text { and } \mathrm{n}=1$	$\begin{aligned} & \mathrm{n}=0: 1 \\ & \mathrm{n}=1: 1 \end{aligned}$


Base cases	fibrec $(\mathrm{n})=\mathrm{fibiter}(\mathrm{n})$
```def fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1```	```def fibrec(n): if n <= 1: return 1 else: return fibrec(n-2) + fibrec(n-1)```
$\mathrm{n}=0$ and $\mathrm{n}=1$	
Loop doesn't execute at all prev1 $=1$ and is returned	$\begin{aligned} & \mathrm{n}=0: 1 \\ & \mathrm{n}=1: 1 \end{aligned}$
$\mathrm{n}=0: 1$	

Base cases	fibrec(n) $=$ fibiter(n)
```def fibiter(n): prev2, prev1 = 0,1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1```	```def fibrec(n): if n<= 1: return 1 else: return fibrec(n-2) + fibrec(n-1)```
$n=0 \text { and } n=1$   Loop executes once $\begin{gathered} \text { prev } 1=1+0=1 \\ \mathrm{n}=1: 1 \end{gathered}$	$\begin{aligned} & \mathrm{n}=0: 1 \\ & \mathrm{n}=1: 1 \end{aligned}$



$\begin{aligned} \text { Assume: fibiter }(\mathrm{n}-2) & =\text { fibrec }(\mathrm{n}-2) \\ \text { fibiter }(\mathrm{n}-1) & =\text { fibrec }(\mathrm{n}-1) \end{aligned}$	Prove: fibiter $(\mathrm{n})=$ fibrec $(\mathrm{n})$
```fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1 def fibiter(n): prev2, prev1 = 0, 1 for i in range(n - 2): prev2, prev1 = prev1, (prev1 + prev2) Definition of for loops # iteration n-1 prev2, prev1 = prev1, (prev1 + prev2) # iteration \| prev2, prev1 = prev1, (prev1 + prev2) return prev1```	


$\begin{aligned} \text { Assume: fibiter }(\mathrm{n}-2) & =\text { fibrec }(\mathrm{n}-2) \\ \text { fibiter }(\mathrm{n}-1) & =\text { fibrec }(\mathrm{n}-1) \end{aligned}$	Prove: fibiter (n) $=$ fibrec((n)	
def fibiter(n): prev2, prev1 $=0,1$ for \mathfrak{i} in range($n-2$): prev2, prev1 $=$ prev1, (prev1 + prev2 $)$ \# iteration n-1 prev2, prev1 $=$ prev1, (prev1 + prev2) \# iteration $\\|$ prev2, prev1 = prev1, (prev1 + prev2 $)$ return prev1	What is prev2 after this? assignment $\text { prev2 }=\text { fibrec }(\mathrm{n}-2)$	

Assume: fibiter(n-2) $=$ fibrec $(n-2)$ fibiter $(\mathrm{n}-1)=$ fibrec $(\mathrm{n}-1)$	Prove: fibiter(n) = fibrec(n)
def fibiter(n): prev2, prev1 $=0,1$ for i in range(n - 2): prev2, prev1 = prev1, (prev1 + prev2 $)$ \# iteration n-1 prev1 $=$ fibrec(n-2) prev2, prev1 = prev1, (prev1 + prev2) prev $2=$ fibrec (n-2) \# iteration n prev2, prev1 = prev1, (prev1 + prev2) return prev1	What is prevl after this? by inductive hypothesis $\text { prev1 }=\text { fibrec }(\mathrm{n}-1)$

Assume: fibiter $(\mathrm{n}-2)=$ fibrec $(\mathrm{n}-2)$ fibiter $(\mathrm{n}-1)=$ fibrec $(\mathrm{n}-1)$	Prove: fibiter (n) = fibrec(n)
def fibiter(n): prev2, prev1 $=0$, 1 for \mathfrak{i} in range($n-2$): prev2, prev1 = prev1, (prev1 + prev2) \# iteration n-1 prev1 $=$ fibrec($n-2$) prev2, prev1 $=$ prev1, (prev1 + prev2) \# iteration n prev2, prev1 $=$ prev1, (prev1 + prev2 $)$ \qquad return prev1	What is prevl after this?

