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BIG-O 
David Kauchak 
CS52 – Spring 2015 

Admin 

Assignment 5 
 
Assignment 6: due Monday (11/2 at 11:59pm) 
 
Start on time ☺ 
 
Academic honesty 

member 

What is it’s type signature? 
 
What does it do? 

member 

‘a -> ‘a list -> bool 
 
Determines if the first argument is in the 
second argument 
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member 

How fast is it? 

Depends on the input! 

For a list with k elements in it, how 
many calls are made to member? 

member 

For a list with k elements in it, how many calls are 
made to member in the worst case? 

Worst case is when the item doesn’t exist in the list 
k+1 times: 
-  each element will be examined one time (2nd pattern) 
-  plus one time for the empty list 

member 

How will the run-time grow as the list size increases? 

Linearly:  
-  for each element we add to the list, we’ll have to 

make one more recursive call 
-  doubling the size of the list would roughly double 

the run-time 

Uniquify 

The image cannot be displayed. Your computer may 
not have enough memory to open the image, or the 
image may have been corrupted. Restart your 
computer, and then open the file again. If the red x 
still appears, you may have to delete the image and 
then insert it again.

Type signature? 

What do they do? 

Which is faster? 

How much faster? 
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uniquify0 

How many calls to member are made for a 
list of size k, including calls made in uniquify0 
as well as recursive calls made in member? 

Depends on the values! 

uniquify0 

Worst case, how many calls to member are 
made for a list of size k, including calls made 
in uniquify0 as well as recursive calls made in 
member? 

uniquify0 

How many calls are made if the list is empty? 

0 

uniquify0 

Recursive case: 
Let count0(i) be the number of calls that uniquify0 makes 
to member for a list of size i. 
 
Can you define the number of calls for a list of size k 
(count0(k))?  Hint: the definition will be recursive? 
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uniquify0 

Recursive case: 
Let count0(i) be the number of calls that uniquify0 makes 
to member for a list of size i. 

count0 (k) = (k +1)+ count0 (k −1)

worst case number of calls for 
1 call to member of size k 

number of calls for uniquify0 
on a list of size k-1 

Recurrence relation 

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

How many calls is this? 

Recurrence relation 

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) = k + count(k −1)

= k + k −1+ count0 (k − 2)

= k + k −1+ k − 2+ count0 (k −3)

= k + k −1+ k − 2+...+1+ count0 (0)

= k + k −1+ k − 2+...+1+ 0

Recurrence relation 

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

≈
k2

2
calls to member 

Can you prove this? 
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Proof by induction 

1.  State what you’re trying to prove! 
2.  State and prove the base case 

-  What is the smallest possible case you need to consider? 
-  Should be fairly easy to prove 

3.  Assume it’s true for k (or k-1).  Write out specifically 
what this assumption is (called the inductive hypothesis). 

4.  Prove that it then holds for k+1 (or k) 
a.  State what you’re trying to prove (should be a variation on 

step 1) 
b.  Prove it.  You will need to use inductive hypothesis. 

 

Proof by induction! 

1.  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

2.   base case? 

Proof by induction! 

1.  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

2.   k = 0 

count0 (k) =
0(0+1)
2

= 0

count0 (k) = 0 from definition of count0 

what we’re trying to prove 

3. assume:  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) = inductive hypothesis 

1.  count0 (k) =
k(k +1)
2
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3. assume:  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

inductive hypothesis 

1.  count0 (k) =
k(k +1)
2

count0 (k −1) =
(k −1)k
2

3. assume:  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) =
(k −1)k
2

inductive hypothesis 

4. prove:  count0 (k) =
k(k +1)
2

count0 (k) = k + count0 (k −1) by definition of count0 

= k + (k −1)k
2

inductive hypothesis 

=
2k + k2 − k

2

1.  count0 (k) =
k(k +1)
2

math (k = 2k/2, multiply (k-1)k) 

Proof by induction! 

3. assume:  

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) =
(k −1)k
2

inductive hypothesis 

4. prove:  count0 (k) =
k(k +1)
2

=
2k + k2 − k

2

=
k2 + k
2

=
k(k +1)
2 Done! 

more math (subtraction) 

more math (factor out k) 

uniquify1 

What is the recurrence relation for calls to member 
for uniquify1?  Write a recursive function called 
count1 that gives the number of calls to member for 
a list of size k. 

count1(k) = if, k = 0
                 otherwise

!
"
#

$#
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uniquify1 

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

How many calls is that? 

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

I claim: count1(k) = 2k+1 − k − 2

Can you prove it? 

Prove it! 

1.  State what you’re trying to prove! 
2.  State and prove the base case 
3.  Assume it’s true for k (or k-1) (and state the 

inductive hypothesis!) 
4.  Show that it holds for k+1 (or k) 

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

1.  count1(k) = 2
k+1 − k − 2

Proof by induction! 

1.  

2.   Base case: k = 0 

count1(k) =

count1(k) = 0

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

count1(k) = 2
k+1 − k − 2

from definition of count1 

what we’re trying to prove 
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Proof by induction! 

1.  

2.   Base case: k = 0 

count1(k) = 2
1 − 0− 2 = 0

count1(k) = 0

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

count1(k) = 2
k+1 − k − 2

from definition of count1 

what we’re trying to prove 

Proof by induction! 

3. assume:  
inductive hypothesis 

1.  count1(k) = 2
k+1 − k − 2

count1(k −1) =

= 2k − k −1

2k − (k −1)− 2

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

Proof by induction! 

3. assume:  count1(k −1) = 2
k − k −1 inductive hypothesis 

4. prove:  

count1(k) = k + 2count1(k −1) by definition of count1 

= k + 2(2k − k −1) inductive hypothesis 

count1(k) = 2
k+1 − k − 2

= k + 2k+1 − 2k − 2

= 2k+1 − k − 2 Done! 

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

math (multiply through by 2) 

math 

Does it matter? 

count1(k) = 2
k+1 − k − 2

count0 (k) =
k(k +1)
2

vs. 
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Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

? 

Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 

0 
? 

Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 1 

0 1 
? 

Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 1 3 

0 1 4 
? 
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Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 1 3 6 15 … 

0 1 4 11 57 … 
? 

Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 1 3 6 15 … 55 … 

0 1 4 11 57 … 2036 … 
? 

Does it matter? 

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k 

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 … 

0 1 3 6 15 … 55 5050 … 

0 1 4 11 57 … 2036 2.5 x 1030 … 

Maybe it’s not that bad 

2.5 x 1030 calls to member for a list of size 100 

Roughly how long will that take? 
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Maybe it’s not that bad 

-  Assume 109 calls per second 
-  ~3 x 107 seconds per year 
-  ~3 x 1017 calls per year 
-  ~1013 years to finish! 

Just to be clear: 10,000,000,000,000 years 
 

2.5 x 1030 calls to member for a list of size 100 

In practice 

On my laptop, starts to slow down with lists of length 
22 or so 

Undo 

What’s the problem? 
Can we fix it? 

Undo 
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Which is faster? Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n) 
above by some constant factor 
of g(n): constant factors don’t 
matter! 

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

For some increasing 
range: we’re interested in 
long-term growth 

We can bound the function f(n) 
above by some constant factor 
of g(n): constant factors don’t 
matter! 
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Visually 

f(n) 

Visually: upper bound 

n0 

f(n) 

Big-O 

member is O(n) – linear 
!  n+1 is O(n) 

 
uniquify0 is O(n2) – quadratic 

!  n(n+1)/2 = n2/2 + n/2 is O(n2) 

 
uniquify1 is O(2n) – exponential 

!  2n+1-n-2 is O(2n) 

uniquify2 is O(n2) – quadratic 
 
 
 

Runtime examples 
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Some examples 

O(1) – constant.  Fixed amount of work, regardless of 
the input size 

! add two 32 bit numbers 
! determine if a number is even or odd 
!  sum the first 20 elements of an array 
! delete an element from a doubly linked list 

 
O(log n) – logarithmic.  At each iteration, discards 
some portion of the input (i.e. half) 

! binary search 

Some examples 

O(n) – linear. Do a constant amount of work on each 
element of the input 

!  find an item in an array (unsorted) or linked list 
! determine the largest element in an array 

 
O(n log n) log-linear.  Divide and conquer algorithms 
with a linear amount of work to recombine 

! Sort a list of number with MergeSort 
! FFT 

Some examples 

O(n2) – quadratic. Double nested loops that iterate 
over the data 

!  Insertion sort 
 
O(2n) – exponential 

! Enumerate all possible subsets 
! Traveling salesman using dynamic programming 

 
O(n!) 

! Enumerate all permutations 
! determinant of a matrix with expansion by minors 

An aside 

My favorite thing in python! 
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What do these functions do? Runtime 

Which is faster? 
What is the big-O runtime of each function in terms 
of n, i.e. how does the runtime grow w.r.t. n? 

Runtime 

O(n) – linear 
 
Informal justification: 
The for loop does n iterations and does just a constant amount of 
work for each iteration.  An increase in n will see a corresponding 
increase in the number of iterations. 

Runtime 

Guess? 
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Runtime 

Guess: O(2n) – for each call, makes two recursive calls 

What is the recurrence relation? 

Runtime 

Guess: O(2n) – for each call, makes two recursive calls 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

Slightly different than the recurrence relation for uniquify1. 

NOTE 

I did not cover the following 
proof in class, but left it in 
the notes as another 
example of an inductive 
proof 

Proof 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n) 
 
Show that f(n) ≤ 2n-1 

Why is this sufficient? 
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Proof 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n) 
 
Show that f(n) ≤ 2n-1 

f(n) ≤ 2n-1≤ 2n (c = 1, for all n ≥ 0) 

Proof 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n) 
 
Show that f(n) ≤ 2n-1 

How do we prove this? Induction! 

Proof by induction 

1. Prove: f(n) ≤ 2n-1 
 
2. Base case: 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

n = 1 

f (1) = 21 −1=1 What we’re trying to prove 

Proof by induction 

1. Prove: f(n) ≤ 2n-1 
 
3. Inductive hypothesis: 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

f (n) ≤ 2n −1Assume: 

4. Prove: 

f (n+1) ≤ 2n+1 −1n+1: 
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Proof by induction f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

1+ f (n−1)+ f (n) ≤ f (n−1)+ 2n −1

f (n) ≤ 2n −1Assume: f (n+1) ≤ 2n+1 −1Prove: 

f (n+1) =
definition of f(n) 

inductive hypothesis 

What do we do with ? 

Proof by induction 

1. Prove: f(n) ≤ 2n-1 
 
3. Inductive hypothesis: 

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

f (n) ≤ 2n −1Assume: 

4. Prove: 

f (n+1) ≤ 2n+1 −1n+1: 

f (n−1) ≤ 2n−1 −1 strong induction 

Proof by induction f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

1+ f (n−1)+ f (n) ≤ 2n−1 −1+ 2n −1

f (n) ≤ 2n −1Assume: f (n+1) ≤ 2n+1 −1Prove: 

f (n+1) =
definition of f(n) 

inductive hypotheses 

f (n−1) ≤ 2n−1 −1

≤ 2n−1 + 2n − 2
≤ 2n + 2n − 2

≤ 2 ⋅2n − 2

≤ 2n+1 − 2

math 

2n-1< 2n 

more math 

Done! ≤ 2n+1 −1

Proving exponential runtime 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We proved that f(n) is O(2n) 

Is this sufficient to prove that f(n) takes an exponential 
amount of time? 

No.  This is only an upper bound! 

Most of the time, this is what we’re worried about, talking 
about bounding the running time of our algorithm, i.e. no 
worse than. 
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Proving exponential runtime 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We proved that f(n) is O(2n) 

How would we prove that f(n) is exponential, i.e. always 
takes exponential time? 

f(n) ≥ c2n, for some c 

Using induction, can prove f(n) ≥ ½ 2n/2  

ENDNOTE 

This is the end of the proof 
that I didn’t cover in class 

Proving correctness 

Can you prove that these two functions give the same result, 
i.e. that fibrec(n) = fibiter(n)? 

Prove it! 

1.  State what you’re trying to prove! 
2.  State and prove the base case(s) 

3.  Assume it’s true for all values ≤ k 

4.  Show that it holds for k+1 

fibrec(n) = fibiter(n) 
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Base cases 

n = 0 and n = 1 

? 

fibrec(n) = fibiter(n) Base cases 

n = 0 and n = 1 

n = 0: 1 
n = 1: 1 ? 

fibrec(n) = fibiter(n) 

Base cases 

n = 0 and n = 1 

n = 0: 1 
n = 1: 1 

Loop doesn’t execute at all 
 
prev1 = 1 and is returned 

n = 0: 1 

fibrec(n) = fibiter(n) Base cases 

n = 0 and n = 1 

n = 0: 1 
n = 1: 1 

Loop executes once 
 
prev1 = 1 + 0 = 1 

n = 1: 1 

fibrec(n) = fibiter(n) 
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Inductive hypotheses 

Assume: 

fibrec(n) = fibiter(n) 

fibrec(n-1) = fibiter(n-1) 

fibrec(n-2) = fibiter(n-2) 

Prove: 

fibrec(n) = fibiter(n) 

Definition of for loops 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

What is prev1 after this? 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

prev1 = fibiter(n-2) 

prev1 = fibrec(n-2) 

by inductive hypothesis: 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 
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prev1 = fibrec(n-2) 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

What is prev2 after this? 

prev2 = fibrec(n-2) 
assignment prev1 = fibrec(n-2) 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

What is prev1 after this? 

prev1 = fibrec(n-1) 

by inductive hypothesis 

prev2 = fibrec(n-2) 

prev1 = fibrec(n-2) 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

prev2 = fibrec(n-2) 
prev1 = fibrec(n-1) 

What is prev1 after this? 

prev1 = fibrec(n-2) 

Assume: fibiter(n-2) = fibrec(n-2) 

            fibiter(n-1) = fibrec(n-1) 

Prove: fibiter(n) = fibrec(n) 

prev2 = fibrec(n-2) 
prev1 = fibrec(n-1) 

Done! 


