
10/23/15	

1	

BIG-O
David Kauchak
CS52 – Spring 2015

Admin

Assignment 5

Assignment 6: due Monday (11/2 at 11:59pm)

Start on time ☺

Academic honesty

member

What is it’s type signature?

What does it do?

member

‘a -> ‘a list -> bool

Determines if the first argument is in the
second argument

10/23/15	

2	

member

How fast is it?

Depends on the input!

For a list with k elements in it, how
many calls are made to member?

member

For a list with k elements in it, how many calls are
made to member in the worst case?

Worst case is when the item doesn’t exist in the list
k+1 times:
-  each element will be examined one time (2nd pattern)
-  plus one time for the empty list

member

How will the run-time grow as the list size increases?

Linearly:
-  for each element we add to the list, we’ll have to

make one more recursive call
-  doubling the size of the list would roughly double

the run-time

Uniquify

The image cannot be displayed. Your computer may
not have enough memory to open the image, or the
image may have been corrupted. Restart your
computer, and then open the file again. If the red x
still appears, you may have to delete the image and
then insert it again.

Type signature?

What do they do?

Which is faster?

How much faster?

10/23/15	

3	

uniquify0

How many calls to member are made for a
list of size k, including calls made in uniquify0
as well as recursive calls made in member?

Depends on the values!

uniquify0

Worst case, how many calls to member are
made for a list of size k, including calls made
in uniquify0 as well as recursive calls made in
member?

uniquify0

How many calls are made if the list is empty?

0

uniquify0

Recursive case:
Let count0(i) be the number of calls that uniquify0 makes
to member for a list of size i.

Can you define the number of calls for a list of size k
(count0(k))? Hint: the definition will be recursive?

10/23/15	

4	

uniquify0

Recursive case:
Let count0(i) be the number of calls that uniquify0 makes
to member for a list of size i.

count0 (k) = (k +1)+ count0 (k −1)

worst case number of calls for
1 call to member of size k

number of calls for uniquify0
on a list of size k-1

Recurrence relation

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

How many calls is this?

Recurrence relation

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) = k + count(k −1)

= k + k −1+ count0 (k − 2)

= k + k −1+ k − 2+ count0 (k −3)

= k + k −1+ k − 2+...+1+ count0 (0)

= k + k −1+ k − 2+...+1+ 0

Recurrence relation

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

≈
k2

2
calls to member

Can you prove this?

10/23/15	

5	

Proof by induction

1.  State what you’re trying to prove!
2.  State and prove the base case

-  What is the smallest possible case you need to consider?
-  Should be fairly easy to prove

3.  Assume it’s true for k (or k-1). Write out specifically
what this assumption is (called the inductive hypothesis).

4.  Prove that it then holds for k+1 (or k)
a.  State what you’re trying to prove (should be a variation on

step 1)
b.  Prove it. You will need to use inductive hypothesis.

Proof by induction!

1.

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

2. base case?

Proof by induction!

1.

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k) =
k(k +1)
2

2. k = 0

count0 (k) =
0(0+1)
2

= 0

count0 (k) = 0 from definition of count0

what we’re trying to prove

3. assume:

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) = inductive hypothesis

1. count0 (k) =
k(k +1)
2

10/23/15	

6	

3. assume:

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

inductive hypothesis

1. count0 (k) =
k(k +1)
2

count0 (k −1) =
(k −1)k
2

3. assume:

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) =
(k −1)k
2

inductive hypothesis

4. prove: count0 (k) =
k(k +1)
2

count0 (k) = k + count0 (k −1) by definition of count0

= k + (k −1)k
2

inductive hypothesis

=
2k + k2 − k

2

1. count0 (k) =
k(k +1)
2

math (k = 2k/2, multiply (k-1)k)

Proof by induction!

3. assume:

count0 (k) =
0 if, k = 0

k + count0 (k −1) otherwise

"
#
$

%$

count0 (k −1) =
(k −1)k
2

inductive hypothesis

4. prove: count0 (k) =
k(k +1)
2

=
2k + k2 − k

2

=
k2 + k
2

=
k(k +1)
2 Done!

more math (subtraction)

more math (factor out k)

uniquify1

What is the recurrence relation for calls to member
for uniquify1? Write a recursive function called
count1 that gives the number of calls to member for
a list of size k.

count1(k) = if, k = 0
 otherwise

!
"
#

$#

10/23/15	

7	

uniquify1

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

How many calls is that?

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

I claim: count1(k) = 2k+1 − k − 2

Can you prove it?

Prove it!

1.  State what you’re trying to prove!
2.  State and prove the base case
3.  Assume it’s true for k (or k-1) (and state the

inductive hypothesis!)
4.  Show that it holds for k+1 (or k)

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

1. count1(k) = 2
k+1 − k − 2

Proof by induction!

1.

2. Base case: k = 0

count1(k) =

count1(k) = 0

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

count1(k) = 2
k+1 − k − 2

from definition of count1

what we’re trying to prove

10/23/15	

8	

Proof by induction!

1.

2. Base case: k = 0

count1(k) = 2
1 − 0− 2 = 0

count1(k) = 0

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

count1(k) = 2
k+1 − k − 2

from definition of count1

what we’re trying to prove

Proof by induction!

3. assume:
inductive hypothesis

1. count1(k) = 2
k+1 − k − 2

count1(k −1) =

= 2k − k −1

2k − (k −1)− 2

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

Proof by induction!

3. assume: count1(k −1) = 2
k − k −1 inductive hypothesis

4. prove:

count1(k) = k + 2count1(k −1) by definition of count1

= k + 2(2k − k −1) inductive hypothesis

count1(k) = 2
k+1 − k − 2

= k + 2k+1 − 2k − 2

= 2k+1 − k − 2 Done!

count1(k) =
0 if, k = 0

k + 2 *count1(k −1) otherwise

"
#
$

%$

math (multiply through by 2)

math

Does it matter?

count1(k) = 2
k+1 − k − 2

count0 (k) =
k(k +1)
2

vs.

10/23/15	

9	

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

?

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0

0
?

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0 1

0 1
?

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0 1 3

0 1 4
?

10/23/15	

10	

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0 1 3 6 15 …

0 1 4 11 57 …
?

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0 1 3 6 15 … 55 …

0 1 4 11 57 … 2036 …
?

Does it matter?

count1(k) = 2
k+1 − k − 2count0 (k) =

k(k +1)
2

k

count0 (k)

count1(k)

0 1 2 3 4 … 10 100 …

0 1 3 6 15 … 55 5050 …

0 1 4 11 57 … 2036 2.5 x 1030 …

Maybe it’s not that bad

2.5 x 1030 calls to member for a list of size 100

Roughly how long will that take?

10/23/15	

11	

Maybe it’s not that bad

-  Assume 109 calls per second
-  ~3 x 107 seconds per year
-  ~3 x 1017 calls per year
-  ~1013 years to finish!

Just to be clear: 10,000,000,000,000 years

2.5 x 1030 calls to member for a list of size 100

In practice

On my laptop, starts to slow down with lists of length
22 or so

Undo

What’s the problem?
Can we fix it?

Undo

10/23/15	

12	

Which is faster? Big O: Upper bound

O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

Big O: Upper bound

O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n)
above by some constant factor
of g(n): constant factors don’t
matter!

Big O: Upper bound

O(g(n)) is the set of functions:

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

For some increasing
range: we’re interested in
long-term growth

We can bound the function f(n)
above by some constant factor
of g(n): constant factors don’t
matter!

10/23/15	

13	

Visually

f(n)

Visually: upper bound

n0

f(n)

Big-O

member is O(n) – linear
!  n+1 is O(n)

uniquify0 is O(n2) – quadratic

!  n(n+1)/2 = n2/2 + n/2 is O(n2)

uniquify1 is O(2n) – exponential

!  2n+1-n-2 is O(2n)

uniquify2 is O(n2) – quadratic

Runtime examples

10/23/15	

14	

Some examples

O(1) – constant. Fixed amount of work, regardless of
the input size

! add two 32 bit numbers
! determine if a number is even or odd
!  sum the first 20 elements of an array
! delete an element from a doubly linked list

O(log n) – logarithmic. At each iteration, discards
some portion of the input (i.e. half)

! binary search

Some examples

O(n) – linear. Do a constant amount of work on each
element of the input

!  find an item in an array (unsorted) or linked list
! determine the largest element in an array

O(n log n) log-linear. Divide and conquer algorithms
with a linear amount of work to recombine

! Sort a list of number with MergeSort
! FFT

Some examples

O(n2) – quadratic. Double nested loops that iterate
over the data

!  Insertion sort

O(2n) – exponential

! Enumerate all possible subsets
! Traveling salesman using dynamic programming

O(n!)

! Enumerate all permutations
! determinant of a matrix with expansion by minors

An aside

My favorite thing in python!

10/23/15	

15	

What do these functions do? Runtime

Which is faster?
What is the big-O runtime of each function in terms
of n, i.e. how does the runtime grow w.r.t. n?

Runtime

O(n) – linear

Informal justification:
The for loop does n iterations and does just a constant amount of
work for each iteration. An increase in n will see a corresponding
increase in the number of iterations.

Runtime

Guess?

10/23/15	

16	

Runtime

Guess: O(2n) – for each call, makes two recursive calls

What is the recurrence relation?

Runtime

Guess: O(2n) – for each call, makes two recursive calls

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

Slightly different than the recurrence relation for uniquify1.

NOTE

I did not cover the following
proof in class, but left it in
the notes as another
example of an inductive
proof

Proof

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n)

Show that f(n) ≤ 2n-1

Why is this sufficient?

10/23/15	

17	

Proof

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n)

Show that f(n) ≤ 2n-1

f(n) ≤ 2n-1≤ 2n (c = 1, for all n ≥ 0)

Proof

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We want to prove that f(n) is O(2n)

Show that f(n) ≤ 2n-1

How do we prove this? Induction!

Proof by induction

1. Prove: f(n) ≤ 2n-1

2. Base case:

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

n = 1

f (1) = 21 −1=1 What we’re trying to prove

Proof by induction

1. Prove: f(n) ≤ 2n-1

3. Inductive hypothesis:

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

f (n) ≤ 2n −1Assume:

4. Prove:

f (n+1) ≤ 2n+1 −1n+1:

10/23/15	

18	

Proof by induction f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

1+ f (n−1)+ f (n) ≤ f (n−1)+ 2n −1

f (n) ≤ 2n −1Assume: f (n+1) ≤ 2n+1 −1Prove:

f (n+1) =
definition of f(n)

inductive hypothesis

What do we do with ?

Proof by induction

1. Prove: f(n) ≤ 2n-1

3. Inductive hypothesis:

f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

f (n) ≤ 2n −1Assume:

4. Prove:

f (n+1) ≤ 2n+1 −1n+1:

f (n−1) ≤ 2n−1 −1 strong induction

Proof by induction f (n) =
1 if, n ≤1

1+ f (n− 2)+ f (n−1) otherwise

#
$
%

&%

1+ f (n−1)+ f (n) ≤ 2n−1 −1+ 2n −1

f (n) ≤ 2n −1Assume: f (n+1) ≤ 2n+1 −1Prove:

f (n+1) =
definition of f(n)

inductive hypotheses

f (n−1) ≤ 2n−1 −1

≤ 2n−1 + 2n − 2
≤ 2n + 2n − 2

≤ 2 ⋅2n − 2

≤ 2n+1 − 2

math

2n-1< 2n

more math

Done! ≤ 2n+1 −1

Proving exponential runtime

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We proved that f(n) is O(2n)

Is this sufficient to prove that f(n) takes an exponential
amount of time?

No. This is only an upper bound!

Most of the time, this is what we’re worried about, talking
about bounding the running time of our algorithm, i.e. no
worse than.

10/23/15	

19	

Proving exponential runtime

O(g(n)) = f (n) :
there exists positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We proved that f(n) is O(2n)

How would we prove that f(n) is exponential, i.e. always
takes exponential time?

f(n) ≥ c2n, for some c

Using induction, can prove f(n) ≥ ½ 2n/2

ENDNOTE

This is the end of the proof
that I didn’t cover in class

Proving correctness

Can you prove that these two functions give the same result,
i.e. that fibrec(n) = fibiter(n)?

Prove it!

1.  State what you’re trying to prove!
2.  State and prove the base case(s)

3.  Assume it’s true for all values ≤ k

4.  Show that it holds for k+1

fibrec(n) = fibiter(n)

10/23/15	

20	

Base cases

n = 0 and n = 1

?

fibrec(n) = fibiter(n) Base cases

n = 0 and n = 1

n = 0: 1
n = 1: 1 ?

fibrec(n) = fibiter(n)

Base cases

n = 0 and n = 1

n = 0: 1
n = 1: 1

Loop doesn’t execute at all

prev1 = 1 and is returned

n = 0: 1

fibrec(n) = fibiter(n) Base cases

n = 0 and n = 1

n = 0: 1
n = 1: 1

Loop executes once

prev1 = 1 + 0 = 1

n = 1: 1

fibrec(n) = fibiter(n)

10/23/15	

21	

Inductive hypotheses

Assume:

fibrec(n) = fibiter(n)

fibrec(n-1) = fibiter(n-1)

fibrec(n-2) = fibiter(n-2)

Prove:

fibrec(n) = fibiter(n)

Definition of for loops

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

What is prev1 after this?

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

prev1 = fibiter(n-2)

prev1 = fibrec(n-2)

by inductive hypothesis:

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

10/23/15	

22	

prev1 = fibrec(n-2)

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

What is prev2 after this?

prev2 = fibrec(n-2)
assignment prev1 = fibrec(n-2)

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

What is prev1 after this?

prev1 = fibrec(n-1)

by inductive hypothesis

prev2 = fibrec(n-2)

prev1 = fibrec(n-2)

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

prev2 = fibrec(n-2)
prev1 = fibrec(n-1)

What is prev1 after this?

prev1 = fibrec(n-2)

Assume: fibiter(n-2) = fibrec(n-2)

 fibiter(n-1) = fibrec(n-1)

Prove: fibiter(n) = fibrec(n)

prev2 = fibrec(n-2)
prev1 = fibrec(n-1)

Done!

