

A useful identity

A useful identity

The sum of the powers of 2 from from 0 to n is:
$\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1$

For example, what is:

$1+2+4+8+16=31=2^{5}-1$
$1+2+4+8+\ldots+2^{9}=2^{10}-1=1023$

An example

1. State what you're trying to prove!

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

Proof by induction

1. State what you're trying to prove!
2. State and prove the base case

What is the smallest possible case you need to consider? Should be fairly easy to prove
3. Assume it's true for k (or $k-1$). Write out specifically what this assumption is (called the inductive hypothesis).
4. Prove that it then holds for $\mathrm{k}+1$ (or k)

State what you're trying to prove (should be a variation on step 1)
b. Prove it. You will need to use inductive hypothesis.
An example

1. $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$
2. Base case:

What is the smallest possible case you need to consider?

| An example 1. $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$

 Whase case: does the identity say the answer should be? |
| :--- | :--- |

An example

1. $\sum_{=-1}^{n} 2^{2}=2^{m+1}-1$
2. Base case:
$i=0$
$\sum_{n=0}^{0} 2^{i}=2^{0 n+1}-1=1$
Is that right?

An example

1. $\sum_{=1}^{n} 2^{i}=2^{2+1}-1$
2. Assume it's true for some k (inductive hypothesis)

Assume: $\sum_{i=0}^{k} 2^{i}=2^{k+1}-1$
4. Prove that it's true for $k+1$
a. State what you're trying to prove:

$$
\sum_{i=0}^{m i a^{i}}=^{t^{n+2}-1}
$$

Proof by induction	
We proved the base case is true, e.g.	$\sum_{i=0}^{0} 2^{i}=2^{1}-1$
If $\mathrm{k}=0$ is true (the base case) then $\mathrm{k}=1$ is true	$\sum_{i=0}^{1} 2^{i}=2^{2}-1$
If $\mathrm{k}=1$ is true then $\mathrm{k}=2$ is true	$\sum_{i=0}^{2} 2^{i}=2^{3}-1$
-	
If $\mathrm{n}-1$ is true then n is true	$\sum_{i=0}^{n} 2^{i}=2^{n}-1$

Prove it! $\quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

A useful identity

The sum of the numbers from 1 to n is:

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

For example, what is sum from 1 to 5 ? 1 to 100 ?
$1+2+3+4+5=15=5 * 6 / 2$
$1+2+3+\ldots+100=100 * 101 / 2=10100 / 2=5050$

