° THE BOAT ONCY HOLD5 TWO, BUT YOU
CAN'T LEPVE. THE GOAT WITH THE.
CABBRAGE OR THE WOLF WITH THE GOAT.

Bl |

http://xked.com/1134/

DIGITAL CIRCUITS

10/8/15

Admin

Assignment 4 due Monday at 11:59pm

Assignment 5 posted soon
o due Friday Oct. 23rd, at 5pm

CS lunch today!

Midterm
Average: 23.25
Top quartile: 26

Top half (median): 24.6
Bottom quartile: 21.4

10/8/15

Diving into your computer

22T T

eI ITEET—N TT

—crEEEeeT o :
P e Rt

Normal computer user

After intro CS

“Faort objectdran.;

public class Frog {
s "7 Height of the frog tsage
private static final double FROGHEIGHT = 48;

/7 This showld refer
77 initialize by
private VisibleInoge froglecge;

the {mage of the frog. Note that it is not

public Frog) {

)

public boolean overlops(Visiblelnage veniclelnage) {
return false; // YOU NEED TO CHANGE THIS!

public void KILO {

)

public void retncarnate) {

)

public void hopTomard(Location point) {

)

public boolean 1sAliveO) {
return false; // YOU NEED TO CHANGE THIS!

After 5 weeks of ¢s52

“heport objectdran.;

Toa r1 0 0
Toa r2 10 0
add r3 r0 ro

ble r1 ro endloop

e o e s ¢ Toop

¥ ; add r3 r3 r2
sbe rlrl 1
b1t r0 rl Toop

plic void KO ¢

i
putic void reincornate) ¢ endloop

N sto r0 r3 0
pulic void hapTomard(iocation point) end

3

public bosleon TsALiveO) €
return falser /7 Y0U NEED TO GHANGE THIS!

; get a value for a
i get a value for b

; result = 0;

i test ifa <0

; result 4= b;

i return for another iteration

; write the value of product
; halt

10/8/15

Instruction View

0000 : 1I/0

0002 : 9400 Toa rl r0

0004 : 9800 1loa r2 r0

0006 : ccO0 add r3 r0 r0
0008 : 7106 bge r0 rl 0010
000a : cf80 add r3 r3 r2
000c : f501 sbhc rlrl 1l
000e : 61fa blt r0 rl 000a
0010 : 8300 sto r0 r3

0012 : 1000 hlt

1001 0100 0000 0000

1001 1000 0000 0000
1100 1100 0000 0000

opcode dest srcO srcl

What now? One last note on CS41B
== |
Instruction View
0000 : 1/0
0002 : 9400 Toa rl r0
Toa r1r0 0 ; get a value for a 0004 : 9800 Toa r2 r0
Toa 12 10 0 i g6t 2 value for b 0006 : cc00 add r3 r0 ro
Hanone el f 0008 : 7106 bge r0 rl 0010
ST st 462 <0 000a : cf80 add r3 r3 r2
W e b 000c : f501 sbc rlrl 1l
bt r0 r1 Toop i return for another iteration 000e : 61fa b1t r0 rl 000a
endloop iee e vatoe of ored 0010 : 8300 sto r0 r3
o e e of produes 0012 : 1000 hlt
end
[— J\ . J
memory address :’;"P‘:Zemcnon Instructions (assembly code)
of code
How do we get this?
Encoding assembly instructions What now?
== |
4 2 2 2 6
[opcode | dest | src0 [srcl | unused]
2 2
[opcode [dest [srco || argument]

1001 0100 0000 0000
1001 1000 0000 0000
1100 1100 0000 0000

10/8/15

Review: binary addition

01010
+01111
2

Do the binary addition, making sure to keep track of the carries.
Assume unsigned numbers for now.

Review: binary addition

1110

01010
+01111

11001

Just to be sure, what are these numbers in decimal?

Review: binary addition

11710

01010 0
+01111 »

11001 %

We saw before, that we can view this problem recursively. How?

fun addAsListsBinary @ nil nil nil
| addAsListsBinary c nil nil [
| addAsListsBinary c x1 nil addAsListsBinary ¢ x1 [0]

addAsListsBinary ¢ nil yl addAsListsBinary c [0] yl
addAsListsBinary ¢ (x::xs) (y::ys)
let

val total = c +x +y

[

in
if total >= 2 then (* check if there's a carry *)
(total - 2)::addAsListsBinary 1 xs ys
else
total::addAsListsBinary @ xs ys
end;

10/8/15

fun

addAsListsBinary @ nil nil
addAsListsBinary ¢ nil nil
addAsListsBinary ¢ x1 nil

[

addAsListsBinary c nil yl
addAsListsBinar .) :
let

val total =c+ x +y
in

if total >= 2 then (* check if there's a carr
(total - 2)::addAsListsBinary 1 xs ys

else

total::addAsListsBinary @ xs ys

end;

handle a digit at a time

nil
[c]
addAsListsBinary ¢ x1 [@]
addAsListsBinary c¢ [0] yl

fun

addAsListsBinary @ nil nil nil
addAsListsBinary ¢ nil nil [
addAsListsBinary ¢ x1 nil addAsListsBinary ¢ x1 [0]

addAsListsBinary ¢ nil yl
addAsListsBinary ¢ (x::xs) (y::ys)
let

val total = c +x +y

addAsListsBinary ¢ [0] yl

in 110
if total >= en (* check if there's arry
sListsBinar] O] 0

else

generate two pieces of information
- output bit
- carry bit

A recursive component

1110

01010
+01111

11001

inl in2 carry-in

carry-out
out

Adding with components

01010
+01111

= 4) =
inl in2 carry-in inl in2 carry-in inl in2 carry-in inl in2

S carry-out carry-out carry-out
ai out out out

10/8/15

Adding with components
|

01010
+01111

11 01

11 01
lli llql*l | |

?

Adding with components

0
o1010

+01111
1

0 01
!
1

11 01 11
| | | l‘ql—l |

Adding with components
|
10
01010
+01111
01
11 011 11 0 01
| | | | ‘T—hl | |
?
? 0 1

Adding with components

110
01010

+01111
001

1 01
|
0

0 01
!
1

11 110
| || ‘Tl*l |
7 0

10/8/15

Adding with components
o

1110
01010

+01111
11001

1171 011 110 01
1lll ll“tl—l | |
1 0 0 1

Implementing the component
o

|

What goes on inside the component?

Implementing the component
o

let
val total = c + x +y
in
if total >= 2 then (* check if there's a carry *)
(total - 2)::addAslistsBinary 1 xs ys

l l l else
total::addAsListsBinary @ xs ys
end;
Current implementation uses addition!

Implementing the component
o

carry-in out carry-
l l l out

_ :

- E=_- o =o E

(]
1
[¢]
1
[¢]
1
0
1

-~ - o0 o0 - = o

What are the outputs?

10/8/15

Implementing the component

inl in2 carry-in
carry-out
out

-~ = - - 0o 0o o o
- -~ - 0 - 0 o o

- EHo=l-Eo E
- © -0 - o - o
- ©o 0o - o - = o

Another implementation

fun addAsListsBinary @ nil nil = nil
| addAsListsBinary c nil nil = [c]
addAsListsBinary ¢ x1 nil = addAsListsBinary c x1 [0]

addAsListsBinary ¢ nil yl addAsListsBinary ¢ [0] yl
addAsListsBinary ¢ (x::xs) (y::ys) =
if x = 1/ andalso y = 1 andalso c = 1 then
1::(addAsListsBinary 1 xs ys)
else if (x = 1 andalsoy = 1) orelse
(x = 1 andalso| c = 1) prelse
(y = 1/ andalso ¢ = 1) then
0::(addAsListsBinary 1 xs ys)
else if x = 1 orelse y = 1 orelse c = 1 then
1::(addAsListsBinary @ xs ys)
else
0::(addAsListsBinary @ xs ys);

- Don't use addition anymore
- Translated the problem into a boolean logic problem

What are some boolean operators?

= _ S e
- o - o
- o o o
o o - -

What are some boolean operators?

= ==
- o - o
- o o o
-
o o - —
o = - =
o o o -
o - - o

10/8/15

Gates

not ‘DO* xor D

Gates as hardware

Wee A
X
wa T and T 1 =
Veut (X)
or >— nor Do— @V AlB|X
s olofq
Gates have inputs and outputs o 011
values are O or 1 1101
= 11110
Are hardware components!
Utilizing gates Utilizing gates
| |
o ol oo v ||] o o ol o o] v |] 1] o
0 1 I 0 I 1 I 1 I 1 I 0 I 1 0 1 I 0 I 1 I 1 I 1 I 0 I 1
_ ol o o] 1| o] 0 N ol o o] 1| o] 0
I vl il ol oo o T>° S B T S R PR
[—
~ ~
0 - ? o Jo

not ~{>%
wa 1

not ~D<F
and D

10/8/15

tes

izing ga

Util

0

]T‘
s

When is this circuit 12

ts

ing circui

terest

igning more in

Des

Design a circuit for this

Utilizing gates

not Do

Utilizing gates

10

10/8/15

Designing more interesting circuits

Back to addition...

0 0 [o)
0 0 0 0 o 0] o 1 inl in2 carry-in
g ? ; : — o 1 o o 1 “’"”"‘”om
- 0 1 1 1 0
o 1 1 ! i> — 1 o o o 1
1 0o o 1) } 1o 1 1 0
10 1 7 o 0 1 0
1 1 0 1 1 1 1 1 1
110 |1 1
A half-adder: no carry-in A half-adder: no carry-in
|
o ol o o] v |] 1] o
0 1|) I 1 I 1 I 1 I 0 I 1
ol o o] 1| o] 0
ool v o] o] o] o

- - o o
- o - o

“--H
o - - o

- - o o
- o - o

A |
o - - o

Design a circuit for this

Hint: solve each output bit
independently

not «D&
and D
or :D

xor :)i}
wana {
nor DO—

11

10/8/15

A half-adder: no carry-in

low order bit of A+B

- - o o
- o = o

- o o o
o - - o
— |

carry

higher order bit of A+B

Implementing a full adder

carry-out

Implementing a full adder

low order bit CAITY-In

of A+B low order bit
of A+B+C
\ A
A] > sum
B J P
\ .
—
high order
bit of A+B 1 Can | ever get a carry
[\] from both half adders?
high order bit of
A+B+C
carry-out

Implementing the component

in1 in2 carry-in
carry-out

out

What goes on inside the component?

12

10/8/15

Implementing the component

A B carry-in
carry-out
sum
carry-in
A S sum
B
carry-out

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A=A A A A,
Adder for adding 4-bit numbers

B=B8,B,B, B,
A; B, carryin A, B, caryin Ay By ey As By carry-in
carry-out carry-out carry-out carry-out

out out out out

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A=A A A A,
Adder for adding 4-bit numbers

B=B8,8,8, B,
0
A; By comydn A, B, camy-in A, By camy-in Ay Bycmn
carry-out carry-out carry-out carry-out
out out out out

Signed addition

0010
+1110

2

Do the binary addition, making sure to keep track of the carries.
Assume signed numbers for now.

13

10/8/15

Signed addition

throw away last carry bit 1110
0010

+1110

0000

Is that right?
What numbers are these?

Signed addition

1110
0010 2

£1110 =2
0000 ©

Ripple carry adder will work for signed and unsigned numbers

Subtraction

0010
-1110

We can solve this doing addition

Subtraction
0010 0010
-1110 0010

flip bits

and add 1 O-I OO

Do addition!

14

10/8/15

Rip

Ap
By

ple carry adder/subtractor

D

Ao | R

i result
By T 0
i A1 T FA | resulty
N Bi 2 amyout

sum;

camyout
| cartyn
Gy " ;22 i FA }» resultz
sum;

FA

: D = 0: addition :
| D = 1: subtraction
Ap-t—
FA sumy, By 0 FA resulty,
catry “(‘
Why does this work? carry

Ripple carry adder/subtractor

D=0 3
. " — A !
Carry in for first adder = 0 B
B, XOR 0 = B;
Ay T FA
B campont
D=1 ~ “oa
Carry in for first adder =1
(+1 to sum)
B, XOR 1 = NOT B, Argé_‘%
(flip all the bits of B) Bn P

Y
carry

resulty

result;

resultz

result,

G

N, Z and V bits

In addition to the sum, we often also calculate some
other useful information:

C: carry out bit of the adder
Z: 1 if the total result is zero, O otherwise
N: sign bit of the result

V: if there was “signed overflow”: the result cannot be
represented with the number of bits we're using

What are the cases where signed overflow can occur?

V bit

V: if there was “signed overflow”: the result cannot be

represented with the number of bits we’re using

Adding two positive numbers (too big positive)
Subtracting a negative number from a positive number (too

big positive)
- Adding two negative numbers (too big negative)
Subtracting a positive number from a negative number (too

big negative)

15

10/8/15

Detecting overflow

0011
+0101

Add these (as signed numbers).
Does overflow occur?

Detecting overflow

111
0011

0101
1000

Yes. How do we detect it?

Detecting overflow

111
0011

+0101
1000

- Added two positive numbers and got a negative

- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of result is
different = overflow

Detecting overflow

0011
- 1001

Subtract these (as signed numbers).

Does overflow occur?

16

10/8/15

Detecting overflow

000
0011

- 1001
1010

Yes. How do we detect it?

Detecting overflow

000
0011

- 1001
1010

- Subtracted a negative number from a positive, should
have been positive

- In general: if the sign bits are the different (of the
numbers we end up subtracting), but the higher order
bit of result is different = overflow

Detecting overflow

100
0011

- 1101
0110

- Subtracted a negative number from a positive

- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of result is
different = overflow

Python basics

17

