
Computer Science 52

Second Midterm: Topics and Practice Exercises

This document contains a list of topics for the midterm and sample exercises.
The evercises do not comprise a complete guide for studying, but they do
cover most of the topics. There is obviously more material here than would
appear on an actual midterm. Many of the individual problems are longer as
well, and some are considerably more complicated.

You are free to talk about the exercises with anyone, but they are perhaps
best used in a “solo” test-like situation. A solution set will not be distributed.

Assignments 4, 5, and 6 are relevant to the exam. See also the course docu-
ments Logic, Words, and Integers (especially sections 1 through 6), Induction,

Recursion, and O-notation, and the first few sections of the CS41B manual.

1. Bits and integers

• base-N representations; conversions

• unsigned and signed (two’s complement) binary representations

• negation, addition, subtraction, bitwise logical operations

• error conditions and flags

1.1. Consider six-bit words under the signed representation.

a. Give the decimal value and the bit pattern of the largest integer that can be
represented in six bits.

b. Negate the value in part a. Express the result as a decimal value and a bit
pattern.



c. Give the decimal value and the bit pattern of the smallest (most negative)
integer that can be represented in six bits.

d. Negate the value in part c. Express the result as a decimal value and a bit
pattern.

1.2. a. Give an example of two six-bit words whose sum is correct when
interpreted in both the unsigned and signed representations.

b. Give an example of two six-bit words whose sum is incorrect when inter-
preted in both the unsigned and signed representations.

c. Give an example of two six-bit words whose sum is correct when interpreted
as an unsigned value but incorrect as a signed value.

d. Give an example of two six-bit words whose sum is correct when inter-
preted as a signed value but incorrect as an unsigned value.

a b a � b

a b

2. Logic and gates

• logical connectives

• gates and circuits

• simulation of gates as Python classes

2.1. One of our examples in class was a 2n-to-1 multiplexer. Consider the
reverse idea, a 1-to-2n multiplexer. It has one input line, n control lines, and
2n output lines. The control lines select one output line to have the value of
the input line; all the other output lines have the value 0.

a. Draw a circuit diagram for a 1-to-2 multiplexer.



b. Using the 1-to-2 multiplexer as a component, draw a diagram for a 1-to-4
multiplexer.

c. Using our Python framework for gates, create a class of 1-to-2n multiplexers.
In keeping with our convention, the class will have just one constructor, which
takes an input node, a list of control nodes, and a list of output nodes.

2.2. The component pictured below has two input and two output lines; its
behavior is specified by the table on the right.

a1

a0

b1

b0

inputs outputs
a0 a1 b0 b1

0 0 1 0
0 1 1 1
1 0 0 1
1 1 0 1

Draw a simple circuit using gates to implement the component. (On a real
midterm, there would be a table of gates.)

3. Subprogram calls and stack frames

• contents of a frame

• counting the number of recursive calls that are active at a given time

3.1. Why does a subprogram push the return address? Are there situations
in which it is not necessary?

3.2. The Python code below solves the n-disc version of the Towers of Hanoi
game. We have eliminated the peg numbers to highlight the recursion.

def hanoi(n) :

if 0 < n :

hanoi(n-1)

move one disc

hanoi(n-1)

Each call to hanoi creates a stack frame that exists until the call has com-
pleted. In terms of n, what is the maximum number of stack frames that



exist at any one time during an initial call to hanoi(n)? Assume that n is
non-negative; give an expression in n and a brief explanation. Be sure to
include the initial call.

4. Recursion, induction, and O-notation

• computing use of a resource (number of loop iterations, number of
recursive calls, number of data values, etc) as a recursive function

• showing by induction that the recursive function has a closed form

• O-notation and intuition

4.1. a. Prove by induction that 03 +13 +23 + . . .+n3 = n2(n+1)2/4 for 0  n.

b. Are you surprised that 03 + 13 + 23 + . . . + n3 = (0 + 1 + 2 + . . . + n)2?

4.2. As a function of n, how many and-gates are needed for your 1-to-2n

multiplexer in Problem 2.1c?

4.3. Here is one variant of the Fibonacci function.

f (n) =
(

1 if n  1, and
f (n � 2) + f (n � 1) otherwise

Use it to prove, for 2  n, that f (0)+f (1)+f (2)+. . .+f (n�1) = f (n+1)�1.

4.4. Here are two SML implementations of the Fibonacci function.

fun fibrec 0 = 1

| fibrec 1 = 1

| fibrec n = (fibrec (n-1)) + (fibrec (n-2));

fun fibpair 0 = (1,0)

| fibpair 1 = (1,1)

| fibpair n = let

val (u,v) = fibpair (n-1);

in

(u+v, u)

end;



a. Prove by induction that fibpair n evaluates to (fibrec n, fibrec (n-1))

for 1  n.

b. Conclude from part a that fibrec n evaluates to the same value as
#1(fibpair n) for 0  n. (No recursion is necessary. Recall that the function
#1 returns the first component of an ordered pair.)

c. Show that the call fibrec n terminates in time O(2n).

d. Show that the call fibpair n terminates in time O(n).

4.5. Prove by list induction on ut that ut @ (vt @ wt) = (ut @ vt) @ wt

for all lists ut, vt, and wt.

4.6. Prove by list induction on ut that

(rev ut) @ (x::yt) = (rev (x::ut)) @ yt

(It is easier to use the nrev characterization of the list-reversing function.
The result of problem 4.5 may be helpful.)

4.7. Often, we must prove a stronger—or more complicated—result than the
one we really want. Here is an example.

Recall the folding functions in SML.

fun foldl oper base nil = base

| foldl oper base (x::xs) = foldl oper (oper(x, base)) xs;

fun foldr oper base nil = base

| foldr oper base (x::xs) = oper(x, foldr oper base xs);

a. Prove by list induction on ut that the following equation holds for all lists
ut, vt, and wt.

foldl oper (foldr oper base (ut @ vt)) wt

= foldl oper (foldr oper base vt) ((rev ut) @ wt)

(This one is a bit complicated and will exercise your patience and skill in
symbol manipulation. Feel free to use the results from previous problems.)



b. Conclude that foldr oper base ut = foldl oper base (rev ut) for
all lists ut. (No induction is necessary. Start with the equation

foldr oper base ut = foldl oper (foldr oper base (ut @ nil)) nil

and apply the result from part a.)

4.8. On Assignment 6, we saw the polymorphic type binTree, which repre-
sented trees having nodes with at most two children. A 2-3 tree is a tree
in which each non-leaf node may have either two or three children and all
subtrees of a node have the same height.

If we ignore the condition on the heights of subtrees, we can make the
following SML type definition.

datatype ’a twoThreeTree =

| Empty

| Binary of ’a

*

’a twoThreeTree

*

’a twoThreeTree

| Ternary of ’a

*

’a twoThreeTree

*

’a twoThreeTree

*

’a twoThreeTree;

a. Write a recursive function N that computes the number of nodes in a
2-3 tree.

b. Write a recursive function ht that computes the height of a 2-3 tree. (In
analogy with binary trees, make the height of the empty tree �1.)

c. Prove by tree induction that 2ht(t)+1 � 1  N(t)  1
2

⇣
3ht(t)+1 � 1

⌘
for all

2-3 trees t.

d. What is the shortest 2-3 tree with 47 nodes? the tallest?


