
Computer Science 52

Induction, Recursion, and O-notation

Fall Semester, 2014

1 Proof by induction

You have seen (somewhere, no doubt) the principle of induction. It has many forms.
One way to state it is as follows:

� [Base Case(s)] Verify that some property P holds for the simplest objects.

� [Induction Step(s)] Assume that the property P holds for all objects simpler
than X, and from that assumption prove that P holds for X.

� [Conclusion] Conclude that the property P holds for all objects.

This principle holds for many classes of objects. Examples are

� the natural numbers, in which “simplest” means zero and “simpler” means
less than;

� lists, in which “simplest” means empty and “simpler” means shorter, and

� finite trees, in which “simplest” again means empty and “simpler” means sub-
tree.

There are also kinds of objects for which the principle of induction fails. One exam-
ple is the set of subsets of natural numbers. Take “simplest” to mean the empty set
and “simpler” to mean proper subset. One can prove that the empty set is finite, and
if every proper subset of a set S is finite, then S is finite. But it would be incorrect
to conclude that every set of natural numbers is finite.

Induction is possible when there is no infinite sequence of successively “simpler”
objects. For the example in the previous paragraph, one can construct an infinite
decreasing chain of proper subsets of the natural numbers, so inductive proofs are
not possible. On the other hand, induction is possible over the collection of finite
subsets of the natural numbers.

An easy example of a proof by induction is verifying that each natural number is
even or odd. We use ordinary induction over the natural numbers.

� [Base case] Observe that 0 is even.

1



� [Inductive step] Given a natural number k, assume that every number less than
k is either even or odd. (This is the hypothesis of induction.) Then k�1 is either
even or odd. If k � 1 is even, then k is odd. If k � 1 is odd, then k is even.
Therefore k is either even or odd.

� [Conclusion] By virtue of the above arguments, any natural number is either
even or odd.

2 Recursive functions

Recursive functions can be defined in a pattern similar to inductive proofs:

� [Base case(s)] Define the value of a function F on each of the simplest objects.

� [Recursive step(s)] Assume that you know the value of F on every object that
is simpler than X, and use (some of) those values to define the value of F on
X.

� [Consequence] Conclude that F is a function defined on all objects.

The possible sets of candidate “objects” are the same as for proof by induction, and
one uses induction to verify facts about recursively-defined functions.

Notice that our consequence can be justified by an appeal to the principle of induc-
tion. Recursion and induction are closely related, but they are used for different
purposes. Often we define a concept by recursion and then prove something about
it by induction. It is natural that the structure of the proof follow the definition,
but it is important to keep the two ideas separate—otherwise the argument appears
circular. One way to think about it is that recursive definitions are justified by the
principle of induction.

When thinking about functions on natural numbers, the definition presented here is
really for a special class called the primitive recursive functions. A later section of
these notes describes the more general case.

3 Examples of Induction and Recursion

For our first example, consider the append operation on lists which is defined using
list recursion:

nil @ yt = yt, and

(x::xs) @ yt = x::(xs @ yt).

2



The recursion occurs on the first of the two arguments to the append operation.
Notice how closely the definition above follows the formulation in SML.

Using the clauses of the definition, we can prove that xt @ nil is xt:

� [Base case] When xt is nil, then we know that nil @ nil is nil. This is just
a special case of the first clause of the definition of the append operation.

� [Induction step] Given a list xt of the form x::xs, assume that xs @ nil is
xs. Then compute as follows:

(x::xs) @ nil = x::(xs @ nil) = x::xs

The last step is the application of the hypothesis of induction.

� [Conclusion] These steps prove that xt @ nil is xt for all lists xt.

Most of the time, people write inductive proofs a bit more informally and omit the
explicit conclusion.

One absolutely critical observation is to see where the hypothesis of induction is
used. If you cannot find its use, then you probably do not have a correct proof.

Sometimes, beginners are uncomfortable with proofs by induction, because each
part of the proof appears so obvious—but it is not at all clear exactly which obvious
facts to write down or in what order they should be written. In the inductive step,
remember that you do not have to prove the inductive hypothesis; it is an assump-
tion. But do remember to use the inductive hypothesis, because it carries most of
the information. In many proofs, the other reasoning is simply a minor maneuver
to get to a place where one can use the inductive hypothesis.

In our second example, we can assign a height to every tree—and hence to every
node in a tree, since a node is effectively a subtree.

� The height of an empty tree is �1.

� The height of a non-empty tree is one greater than the maximum of the heights
of its subtrees.

Although we have not explicitly stated it, height is a recursively-defined function on
trees. The principle of induction tells us that every tree has a height. With the notion
of height, we can state and prove a bound on the number of leaves and nodes in a
tree.

Proposition. A tree of height h has at most 2h leaves and 2h�1 � 1 nodes.

The proof is by induction on trees. Base case: The empty tree has height is �1. It
has zero leaves and zero nodes, and 0 � 2�1 and 0 � 2�1�1 � 1.

3



Induction step: Let T be a tree and assume that the proposition holds for all subtrees
of T . Let L be the left subtree, whose height is hL, whose leaves number mL, and
whose nodes number nL. Our inductive hypothesis tells us that

mL � 2hL and nL � 2hL � 1� 1.

We have an analogous collection of facts about the right subtree R of height hR, with
mR and nR leaves and nodes respectively.

Now, by the definition of height, the height of T is h � 1 �max�hL; hR�. We can
compute the number of leaves in T :

m �mL �mR � 2hL � 2hR � 2 � 2max�hL;hR� � 21�max�hL;hR� � 2h

Take some time to verify each step as you read the equality and inequality symbols
from left to right. Note the essential use of the induction hypotheses about mL and
mR.

Next, compute the number of nodes. There is the root, all the nodes in the left
subtree, and all the nodes in the right subtree.

n � 1�nL �nR � 1�
�
2hL�1 � 1

�
�
�
2hR�1 � 1

�
Again, verify each step and identify the uses of the induction hypothesis. This
completes the induction step, and hence the proof.

4 Complexity analyses

Consider the following natural list functions:

fun member e nil = false

| member e (x::xs) = e = x orelse member e xs;

fun uniquify2 nil = nil

| uniquify2 (x::xs) = if member x (uniquify2 xs)

then uniquify2 xs

else x::(uniquify2 xs);

Let RU2�k� be the number of recursive calls (not counting the first) to uniquify2

when the function is applied to a list of length k.

RU2�k� �
(

0 if k � 0, and
2� 2 � RU2�k� 1� otherwise.

As we have seen, we can prove facts about a recursively-defined function using
induction. One example is that the domain of RU2 is the set of all natural numbers.
That exercise is left for the reader.

4



In another example, we can write the function in closed form and prove by induction
that

RU2�k� � 2k�1 � 2:

Notice from the recursive definition that RU2�0� � 0 and also that 20�1�2 � 0. That
establishes the base case. For the inductive step, assume the induction hypothesis:

For j < k, RU2�j� � 2j�1 � 2.

In particular, when j � k � 1, we have RU2�k � 1� � 2k � 2. Then we can compute
using the definition.

RU2�k� � 2� 2 � RU2�k� 1� from the definition

� 2� 2 �
�
2k � 2

�
by the induction hypothesis

� 2k�1 � 2 by algebra

We say that the function RU2 is exponential, meaning that it has a growth rate very
much like 2k. Such functions get large very quickly as the argument k increases.
For example, the value of RU2�30� is over one billion. One consequence of the
exponential growth rate of RU2 is that the function uniquify2 makes exponentially
many recursive calls and will take a long time to compute. Shortly, we will examine
a more efficient formulation of the same function.

5 O-notation

We want to clarify the phrase that “RU2 has a growth rate very much like 2k.” Sup-
pose that f and g are functions from natural numbers to natural numbers. We say
that f is O�g�, read “f is big-oh of g” or “f is order-of g,” if there are numbers c
and k0 satisfying

f �k� � c g�k� whenever k0 � k.

The idea is that f grows no faster than g.

We use the O-notation to compare functions that represent the running time of
computer programs. We allow the multiplicative constant c because, among other
reasons, you might get a faster computer. We ignore the first few values, those less
than k0, because they might unduly reflect the startup costs of a computation and
be misleading. Of course, these simplifications can be misused: The constant c can
be huge, and the bound k0 could be larger than all the problems we really care about.

While it is true, the fact that 3k is O�2k� is not very interesting. We usually want our
O-notation bounds to be “close.” Further, it is important to remember that there is
only one constant c and one bound k0 in the definition. Those values cannot depend
on k.

5



The number of recursive calls for uniquify2 is O�2k�, computed above, as can be
verified by taking c � 2 and k0 � 0. (Take a moment to write it out.)

A function for the actual running time for uniquify2 must take into account the
call to member as well as the recursive calls. Let A be the amount of time to return
a value; B the amount of time for the if construction; Mk the amount of time, in
the worst case, for the calls to member; and EU2�k� be the total running time when
uniquify2 is applied to a list of length of length k. Then

EU2�k� �
(

A if k � 0, and
A� B �Mk� 2 � EU2�k� 1� otherwise.

It is difficult to express the function in closed form, but it is easy to show that it is
O�3k�. Take c to be A� B �M and n0 to be 3, and prove by induction that

EU2�k� � �A� B �M�3k whenever 3 � k.

(Again, write it out for yourself.) One of the reasons for using the O-notation is to
avoid unnecessary details of expressions like the one above involving A, B, and M .

Consider another function uniquify1.

fun uniquify1 nil = nil

| uniquify1 (x::xs) = if member x xs

then uniquify1 xs

else x::(uniquify1 xs);

A call to a function like uniquify1 has three parts:

� a constant amount of overhead, involving the if and returning a value;

� an O�n� amount of time for the call to member; and

� the time for the recursive call.

We can reason that there are n recursive calls, each taking O�n� time, so the total
running time is O�n2�. (Here is a third opportunity to fill in the details!)

Still another version of uniquify appears below:

fun uniquify3 nil = nil

| uniquify3 (x::xs) =

let

val recResult = uniquify3 xs

in

if member x recResult

then recResult

else x::recResult

end;

6



This function will often be faster than uniquify1, but in the worst case it the same
as uniquify1.

From a mathematical point of view, there is only one uniquify function, but there
are many ways to compute it. We have seen that some implementations are much
faster than others.

6 Further examples with list induction

This section contains some facts about list functions, most of which are proved by
induction. Let us begin by collecting a number of facts about the append operation.

1. nil @ vt = vt

The first part of the recursive definition of append.

2. (u::us) @ vt = u::(us @ vt)

The second part of the definition.

3. ut @ nil = ut

Proved above.

4. [u] @ vt = u::vt

No induction is needed for this result. Simply remember that [u] is an abbre-
viation for u::nil and calculate as follows, using the definition of append:

[u] @ vt = (u::nil) @ vt

= u::(nil @ vt)

= u::vt

5. (ut @ vt) @ wt = ut @ (vt @ wt)

This is proved by list induction on ut. When ut is nil, we have

(nil @ vt) @ wt = vt @ wt = nil @ (vt @ wt)

Both steps are applications of Fact 1. For the induction step, assume that (us

@ vt) @ wt = us @ (vt @ wt) and calculate

((u::us) @ vt) @ wt = (u::(us @ vt)) @ wt

= u::((us @ vt) @ wt)

= u::(us @ (vt @ wt))

= (u::us) @ (vt @ wt)

We must justify each step. The first, second, and last steps are justified by
the definition of the append operation. The third step is an application of the
induction hypothesis.

7



Now we can use the facts about the append operation to establish some results
about our two versions of the reverse function. Here are the definitions.

nrev nil = nil

nrev (u::us) = (nrev us) @ [u]

revApp nil vt = vt

revApp (u::us) vt = revApp us (u::vt)

arev ut = revApp ut nil

6. revApp ut vt = (nrev ut) @ vt

This key fact is proved by induction on ut. It’s clear when ut is nil, because
both sides evaluate to vt. Assume the result is true for us and prove for
u::us.

revApp (u::us) vt = revApp us (u::vt)

= (nrev us) @ (u::vt)

= (nrev us) @ ([u] @ vt)

= ((nrev us) @ [u]) @ vt

= (nrev (u::us)) @ vt

Test yourself by justifying each step above. Remember to identify the use of
the induction hypothesis.

7. arev ut = nrev ut

This shows that both our versions of the reverse function do the same thing.
(They may be both correct or both wrong, but at least we know they are the
same.) The proof is a simple application of the previous fact; no induction is
involved.

arev ut = revApp ut nil

= (nrev ut) @ nil

= nrev ut

We can now prove some more interesting results about the reverse function. The
first is a simple calculation.

8. nrev [u] = (nrev nil) @ [u] = nil @ [u] = [u]

9. nrev (ut @ vt) = (nrev vt) @ (nrev ut)

The proof is by list induction on ut. It is easy when ut is nil. For the induction
step, assume the result for us and calculate as follows.

nrev ((u::us) @ vt)

= nrev (u::(us @ vt))

8



= (nrev (us @ vt)) @ [u]

= ((nrev vt) @ (nrev us)) @ [u]

= (nrev vt) @ ((nrev us) @ [u])

= (nrev vt) @ (nrev (u::us))

10. nrev (nrev ut) = ut

Again, use list induction. It is immediate for nil. Assume the result for us

and compute:

nrev (nrev (u::us))

= nrev ((nrev us) @ [u])

= (nrev [u]) @ (nrev (nrev us))

= [u] @ us

= u::us

Be sure that you can identify the use of the induction hypothesis.

All these facts about list-reversal functions are, perhaps, obvious. The value of the
examples is that they illustrate the fundamental principle of induction and the close
relation between recursion and induction.

As a final example, we investigate the relationship between foldr and foldl. Use
the definitions given in class for foldr and foldl. To simplify the notation, write R

and L, respectively, for foldr f and foldl f.

11. L (R b (ut @ vt)) wt = L (R b vt) ((rev ut) @ wt)

As usual, use list induction on ut. The result is immediate when ut is nil.
Assume that the result holds for us and calculate.

L (R b ((u::us) @ vt)) wt

= L (f(u,R b (us @ vt))) wt

= L (R b (us @ vt)) (u::wt)

= L (R b vt) ((rev us) @ (u::wt))

= L (R b vt) ((rev (u::us)) @ wt)

In the fall of 2003, CS 52 student Daniel Kleinman conjectured a relationship be-
tween foldr and foldl.1 Namely, foldr f b applied to a list yields the same
result as foldl f b applied to the reverse of the list. We can use item 11 to prove
the conjecture.

12. foldr f b ut = foldl f b (rev ut)

With both vt and wt being nil in 11, we get

foldr f b ut = R b ut

= L (R b ut) nil

1It should be noted, however, that Daniel denies responsibility for his conjecture.

9



= L (R b nil) (rev ut)

= L b (rev ut)

= foldl f b (rev ut)

7 A curiosity

What is wrong with the following argument that shows all horses have the same
color?

We show, by induction on finite sets, that every finite set of horses have the same
color. For the base case, just observe that all the horses in the empty set have the
same color. Alternatively, start the induction with sets of size one and note that all
the horses in a set of size one have the same color.

Now assume that all sets of horses of size less than k have the same color. Consider
a set of size k: fh1; h2; : : : ; hkg. By the hypothesis of induction, all the horses in the
smaller set HR � fh2; : : : ; hkg have the same color. Also, all the horses in another
smaller set, HL � fh1; : : : ; hk�1g have the same color. Now, horse h1 has the same
color as all the horses in the intersection fh2; : : : ; hk�1g of our two smaller sets, and
horse hk also has the same color as the horses in the intersection.

We conclude that horse h1, horse hk, and all the horses in the intersection have the
same color. These are all the horses in our original set fh1; h2; : : : ; hkg, and they all
have the same color. Therefore, every finite set of horses has the same color.

8 General Recursion

When we write programs we have broad freedom in the kinds of recursive functions
we can construct. Any self-referential definition is legitimate in the sense that it can
be turned into executable code. Consider the function e on natural numbers defined
by

e�n� � e�n�� 1:

One could easily declare its SML counterpart and (try to) compute the value e�47�.
There is nothing wrong with our recursively-defined function e, it just happens that
it is not defined on the whole set of natural numbers. In fact, it is defined nowhere.

Functions which are defined on a subset of their natural domain are called partial
functions. As the example above shows, partial functions are inescapable.

The primitive recursive techniques discussed earlier yield functions which are de-
fined everywhere, as one can prove using induction. Such functions are called total
functions.

10



A less trivial example is provided by the Takeuchi function from Assignment 1. It
is a total function, defined on all triples of natural numbers, as one can prove by
induction. (Try it!)

Another example is a famous open problem. The “three-n plus one” function, also
known as the Collatz function, is defined on natural numbers:

t�n� �

8>><>>:
1 if n � 1,
t�n=2� if 1 < n and n is even, and
t�3n� 1� otherwise.

Clearly, the only possible value for the function is 1. But does t have a value for
every argument? No one has yet been able to prove that t is a total function.

9 Exercises

Here are a few problems for practice. Use the following definitions, and refer to
them by number.

1a. nil @ vl = vl

1b. (u::us) @ vl = u::(us @ vl)

2a. len nil = 0

2b. len (x::xs) = 1 + (len xs)

3a. map f nil = nil

3b. map f (x::xs) = (f x) :: (map f xs)

4a. cart nil vl = nil

4b. car (u::us) vl = (map (fn y=>(u,y)) vl) @ (car us vl)

1. Prove that len(ul @ vl) � len(ul)� len(vl).

2. Prove that len(map f ul) � len(ul).

3. Prove that map f (ul @ vl) = (map f ul) @ (map f vl).

4. Use the previous results to prove that len(cart ul vl) � len(ul)� len(vl).

11



5. Prove that 20 � 21 � 22 � : : :� 2n�1 � 2n � 1 for 0 � n.

6. We have been using this variant of the Fibonacci function.

f �n� �
(

1 if n � 1, and
f �n� 2�� f �n� 1� otherwise

Use it to prove, for 2 � n, that f �0�� f �1�� f �2�� : : :� f �n� 1� � f �n� 1�� 1.

7. Does the result of Exercise 6 still hold if we start the Fibonacci sequence at zero?

f �n� �

8>><>>:
0 if n � 0,
1 if n � 1, and
f �n� 2�� f �n� 1� otherwise

12


	1 Proof by induction
	2 Recursive functions
	3 Examples of Induction and Recursion
	4 Complexity analyses
	5 O-notation
	6 Further examples with list induction
	7 A curiosity
	8 General Recursion
	9 Exercises
	1 
	2 
	3 
	4 
	5 
	6 
	7 

