
CS52 - Assignment 4

Due Monday 10/12 at 11:59pm

https://xkcd.com/244/

Getting Started

For this assignment we will be coding up functions in CS41B. Make sure you’ve read the CS41B
manual on the course web page and refer to it as you work through this assignment.

Each problem will be in it’s own file, so you will be creating four files: positive.a41, power2.a41,
ackermann.a41 and smash.c.

Aquamacs note: Often Aquamacs uses a variable-width font which makes it difficult to line up
columns. To force it to use a fixed-width font, go to

Options −→ Appearance −→ Auto Faces

and uncheck Auto Faces.

1

Optional: Touching base

We’re about a third of the way through the course and I wanted to touch base with you all, see
how the course is going and see if there is any way we can make it better. I have created a very
short survey. Please take 5 minutes and fill out the anonymous survey by the assignment due date
(optional). I will briefly go over the results in class.

https://docs.google.com/forms/d/1MZRWeB7ho8wEGoI6Dw0xSnLNIxK9a0D5LTTZ2Hr-OWM

1 Warming up

Write a CS41B program positive.a41 that:

- Prompts the user for a number

- then prints 1 if the number is positive, 0 otherwise.

- You must include in your program a separate function that takes a single parameters as “input”
and “returns” 1 if the number is positive, 0 otherwise.

For example, if we ran the program in the simulator and input 10 we would see the following:

CS41B wants a value > 10

CS41B says > 1

2 If you push, you must pop

Write a CS41B program power2.a41 that takes as input a number n and prints out 2n. To
accomplish this write a function that computes powers of 2 by following the recursive pattern
suggested by the SML function below.

2

fun power2 k =

if k < 0 then

0

else if k = 0 then

1

else

double(power2(k-1));

“Doubling” may be implemented by adding a number to itself; there need not be a separate doubling
function. On the other hand, the power2 function itself must be implemented recursively. That is,
the function must save the return address on the stack and eventually jump back to it, and the
body of the function contains a call to itself.

For example,

CS41B wants a value > 5

CS41B says > 32

3 To understand recursion, you must understand recursion

The Ackermann function is defined as:

A(m,n) =


n + 1 if m = 0
A(m− 1, 1) if m 6= 0 and n = 0
A(m− 1, A(m,n− 1)) otherwise

(1)

Write a CS41B program that takes two values, first m and then n, and prints out the corresponding
value of the Ackermann function. Place your work in a file named ackermann.a41.

For completeness, let us specify that A(m,n) = 0 when m or n is negative

For example, here are two runs of the program:

CS41B wants a value > -3

CS41B wants a value > 1

CS41B says > 0

CS41B wants a value > 3

CS41B wants a value > 1

CS41B says > 13

The function grows very quickly, and your program will make lots of recursive calls. Below is s a
table with some values of the function. The value A(4, 2) requires nearly 20,000 decimal digits!

3

n = 0 n = 1 n = 2 n = 3 n = 4

m = 0 1 2 3 4 5
m = 1 2 3 4 5 6
m = 2 3 5 7 9 11
m = 3 5 13 29 61 125
m = 4 13 65533

Your program will actually only be able to produce results for only the smallest values of m and
n. If you squeeze in as much stack space as you can, you ought to be able to compute A(3, 2) but
perhaps not A(3, 3). Nevertheless, your code must be structured as an accurate representation of
the recursive definition above.

4 C anyone?

This short exercise gives us a glimpse into unsafe languages, in this case, the language is the C
programming language.

The program in Figure 1 at the end of this document declares a three-element array of integers,
initializes all three values to 47, calls a procedure that does nothing, and then prints out the values.

Begin by creating a file smash.c with exactly the code in Figure 1. Then compile it with the
terminal command

gcc -o smash smash.c

and run it with the command

./smash

Next, modify the program by changing the procedure do_nothing so that when you run the resulting
program the output values are, in order, 47, 29, and 47. Make changes only between the braces
of do_nothing (i.e. you’re only writing the function do_nothing. For this exercise, we are not
concerned with documentation, so you need not add comments.

The idea is to recognize that the elements of the array a are stored on the stack, and do_nothing

can reach into the stack and change one of those values. You will only have to add a few lines of
code, but it may take a little experimentation to find exactly the right lines. When you are finished,
submit your modified version of smash.c in the usual way.

Here is what you need to know about the C programming language.

i. The syntax of C is very much like Java. Variables must be declared before they are used, and
the equals sign is the assignment operator.

ii. The variable declarations

int k;

int* p;

4

declare an integer k and a “pointer” p to an integer. That is, p is a variable that holds
the address in memory where an integer is stored. The expression *p refers to the integer
at address p; it can be used on either sign of an assignment statement. Be sure that you
understand the difference between the two assignment statements:

p = 8;

*p = 8;

The first sets the value of the variable p to be 8. The second sets the value at the memory
address stored in p to be 8.

iii. It is possible to do arithmetic on addresses. For example, if p is the address of an integer in
memory, then p+1 is the address of the very next integer in memory. The compiler computes
the right number of bytes to add to the address based on the word size. Be sure that you
understand the difference between the two statements:

p = p + 8;

*p = *p + 8;

iv. Finally, the & operator returns the address of a variable, so that the assignment

p = &k;

stores the memory location of variable k in the pointer variable p. (More precisely, p receives
the address in memory which has been reserved for k.) After that assignment, k and *p can
be used interchangeably.

v. printf is a built-in function that prints values. It takes two parameters a string pattern and
the value to be printed. There are many different patterns, but the one used in the code prints
out the value as a number and followed by an end of line character. Adding some temporary
print statements may help you in figuring out the solution, but make sure to remove these
before you submit. Your submitted program should only print three numbers and this printing
should happen with the printf statement already in the code.

When you’re done

Make sure your code compiles. If it does not, you will not get any points for that problem.

Make sure you’ve properly commented your code. You should include:

• A comment header at the top of the file with your name, the date, the assignment number,
etc.

• Almost every line of assembly should have a comment to the right of it.

5

When you’re ready to submit, upload your assignment via the online submission mechanism. You
should upload each of the four problems separately, that is, you should submit four files positive.a41,
power2.a41, ackermann.a41 and smash.c. You may submit as many times as you’d like up until
the deadline. We will only grade the most recent submissions.

Grading

positive.a41 4
power2.a41 6
ackermann.a41 8
smash.c 3

comments/style 3

Total 24

6

#include <stdio.h>

void do_nothing(){

}

int main(){

int j;

int a[3];

for (j = 0; j < 3; j++){

a[j] = 47;

}

do_nothing();

for (j = 0; j < 3; j++){

printf("%d\n", a[j]);

}

return 0;

}

Figure 1: A “do nothing” program in the C language.

7

