

Admin

Assignment 3

Quiz \#1

- High: 36
- Average: 33 (92\%)
\square Median: 33.5 (93\%)
\square Next one will probably be a bit harder $)$

Parsing

Parsing is the field of NLP interested in automatically determining the syntactic structure of a sentence
parsing can also be thought of as determining what sentences are "valid" English sentences

Parsing

We have a grammar, determine the possible parse tree(s)

Let's start with parsing with a CFG (no probabilities)

s	\rightarrow NP VP	I eat sushi with tuna
NP	\rightarrow PRP	
	\rightarrow NPP	
VP	\rightarrow VNP	
	\rightarrow VNPPP	
	$\rightarrow \mathbb{N N}$	approaches?
	$\xrightarrow{\rightarrow}$ 1	algorithms?
N	$\xrightarrow{\rightarrow}{ }_{\text {eat }}^{\text {eat }}$	
	\rightarrow tuna	
	\rightarrow with	

Top Down Parsing

Why is parsing hard?
Actual grammars are large
Lots of ambiguity!
- Most sentences have many parses - Some sentences have a lot of parses often ambiguity for subtrees (i.e. multiple ways to parse a phrase)

Why is parsing hard?

I saw the man on the hill with the telescope

What are some interpretations?

Dynamic Programming Parsing

To avoid extensive repeated work you must cache intermediate results, specifically found constituents

Caching (memoizing) is critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs

Dynamic programming algorithms based on both topdown and bottom-up search can achieve $O\left(n^{3}\right)$ recognition time where n is the length of the input string.
Dynamic Programming Parsing Methods
CKY (Cocke-Kasami-Younger) algorithm based on
bottom-up parsing and requires first normalizing the
grammar.
Earley parser is based on top-down parsing and does
not require normalizing grammar but is more complex.
These both fall under the general category of chart
parsers which retain completed constituents in a chart

CKY parser: the chart

CKY parser: the chart

CKY: some things to talk about

After we fill in the chart, how do we know if there is a parse?

- If there is an \mathbf{S} in the upper right corner

What if we want an actual tree/parse?

A Simple PCFG							
Probabilities!							
	\rightarrow	NP VP	1.0		\rightarrow	NP PP	0.4
	\rightarrow	V NP	0.7	NP	\rightarrow	astronomers	0.1
	\rightarrow	VP PP	0.3	NP	\rightarrow	ears	0.18
PP	\rightarrow	P NP	1.0	NP	\rightarrow		0.04
	\rightarrow	with	1.0	NP	\rightarrow	stars	0.18
	\rightarrow		1.0		\rightarrow	telescope	0.1

Parsing with PCFGs

How does this change our CKY algorithm? \square We need to keep track of the probability of a constituent

How do we calculate the probability of a constituent?
\square Product of the PCFG rule times the product of the probabilities of the sub-constituents (right hand sides)
\square Building up the product from the bottom-up

What if there are multiple ways of deriving a particular constituent?

- max: pick the most likely derivation of that constituent

Probabilistic CKY

Include in each cell a probability for each non-terminal

Cell[i,i] must retain the most probable derivation of each constituent (non-terminal) covering words i through j

When transforming the grammar to CNF, must set production probabilities to preserve the probability of derivations

Probabilistic CKY Parser				
Book	th	flight	through	Houston
	None			
	Det. 6			
NP \rightarrow Det Nominal				
What is the probability of the NP?				

Generic PCFG Limitations

PCFGs do not rely on specific words or concepts, only general structural disambiguation is possible (e.g. prefer to attach PPs to Nominals)
\square Generic PCFGs cannot resolve syntactic ambiguities that require semantics to resolve, e.g. ate with fork vs. meatballs

Smoothing/dealing with out of vocabulary

MLE estimates are not always the best

