

Admin

Assignment 3

Quiz \#1

How was the lab last Thursday?

Simplified View of Linguistics

Nhonetics
Nikolai Trubetzkoy in Grundzüge der Phonologie (1939) defines phonology as "the study of sound pertaining to the system of language," as opposed to phonetics, which is "the study of sound pertaining to the act of speech." hitpo//en.wikipedia.ora/wiki/Phonology
Phonetics: "The study of the pronunciation of words" Phonology: "The areas of linguistics that describes the systematic way that sounds are differently realized in different environments" --The book

Not to be confused with...

CFG: Example

Many possible CFGs for English, here is an example (fragment):
$S \rightarrow N P$ VP
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$N P \rightarrow \operatorname{DetP} \mathrm{~N} \mid \operatorname{AdjP} \mathrm{NP}$
AdjP \rightarrow Adi | Adv Adip
$\mathrm{N} \rightarrow$ boy | girl
$\mathrm{V} \rightarrow$ sees \| likes
Adj \rightarrow big \mid small
Adv \rightarrow very
DetP \rightarrow a \mid the

Formally...
$G=(N T, T, P, S)$

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form
$\mathrm{A} \rightarrow \alpha, \mathrm{A} \in \mathrm{NT}$ and $\alpha \in(\mathrm{T} \cup \mathrm{NT})^{*}$
$S \in N T$: start symbol

Grammar questions

Can we determine if a sentence is grammatical?

Given a sentence, can we determine the syntactic structure?

Can we determine how likely a sentence is to be grammatical? to be an English sentence?

Can we generate candidate, grammatical sentences?

Which of these can we answer with a CFG? How?

Derivations in a CFG	
$\begin{aligned} & \mathbf{S} \rightarrow \text { NP VP } \\ & \mathrm{VP} \rightarrow \text { V NP } \\ & \mathrm{NP} \rightarrow \text { DetP N \| AdjP NP } \\ & \text { AdjP } \rightarrow \text { Adj \| Adv AdjP } \\ & \mathrm{N} \rightarrow \text { boy \| girl } \\ & \mathrm{V} \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big \| small } \\ & \text { Adv } \rightarrow \text { very } \\ & \operatorname{DetP} \rightarrow \text { a } \mid \text { the } \end{aligned}$	S

Parsing
Parsing is the field of NLP interested in
automatically determining the syntactic structure of
a sentence
parsing can be thought of as determining what
sentences are "valid" English sentences
As a by product, we often can get the structure

Parsing

Given a CFG and a sentence, determine the possible parse tree(s)

S.>NP VP	I eat sushi with tuna
NP -> N	
NP -> PRP	What parse trees are possible for this
NP \rightarrow N PP	What parse frees are possible for this
VP $->$ VNP	sentence?
PP -> INN	
PRP \rightarrow I	How did you do it?
$V \rightarrow$ eat	
$\mathrm{N}->$ sushi	
N -> tuna IN -> with	What if the grammar is much larger?

Parsing
Parsing ambiguity

A Simple PCFG							
Probabilities!							
S	\rightarrow	NP VP	1.0		\rightarrow	NP PP	0.4
VP	\rightarrow	$V \mathrm{NP}$	0.7	NP	\rightarrow	astronomers	0.1
VP	\rightarrow	VP PP	0.3	NP	\rightarrow	ears	0.18
PP	\rightarrow	P NP	1.0	NP	\rightarrow	saw	0.04
	\rightarrow	with	1.0	NP	\rightarrow	stars	0.18
V	\rightarrow		1.0			telescope	0.1

Estimating PCFG Probabilities

We can extract the rules from the trees

How do we go from the extracted CFG rules to PCFG rules?

Grammar Equivalence

Weak equivalence: grammars generate same set of strings

$$
\square \text { Grammar 1: NP } \rightarrow \operatorname{DetPN} \text { and } \operatorname{DetP} \rightarrow \text { a | the }
$$

$$
\square \text { Grammar 2: } \mathrm{NP} \rightarrow \mathrm{aN} \mid \text { the } \mathrm{N}
$$

Strong equivalence: grammars have same set of derivation trees
\square With CFGs, possible only with useless rules
\square Grammar 2: $N P \rightarrow a N \mid$ the N
\square Grammar 3: NP $\rightarrow a N \mid$ the $N, \operatorname{DetP} \rightarrow$ many
Normal Forms
There are weakly equivalent normal forms (Chomsky
Normal Form, Greibach Normal Form)
A CFG is in Chomsky Normal Form (CNF) if all
productions are of one of two forms:
$\quad \square A \rightarrow B C$ with A, B, C nonterminals
$\square A \rightarrow a$, with A a nonterminal and a a terminal
Every CFG has a weakly equivalent CFG in CNF

CNF Grammar	
$\begin{aligned} & \text { S -> VP } \\ & \text { VP -> VB NP } \\ & \text { VP -> VB NP PP } \\ & \text { NP -> DT NN } \\ & \text { NP -> NN } \\ & \text { NP -> NP PP } \\ & \text { PP -> IN NP } \\ & \text { DT -> the } \\ & \text { IN -> with } \\ & \text { VB -> film } \\ & \text { VB -> trust } \\ & \text { NN -> man } \\ & \text { NN -> film } \\ & \text { NN -> trust } \end{aligned}$	$\begin{aligned} & \text { S -> VP } \\ & \text { VP -> VB NP } \\ & \text { VP -> VP2 PP } \\ & \text { VP2 -> VB NP } \\ & \text { NP -> DT NN } \\ & \text { NP -> NN } \\ & \text { NP -> NP PP } \\ & \text { PP -> IN NP } \\ & \text { DT -> the } \\ & \text { IN -> with } \\ & \text { VB -> film } \\ & \text { VB -> trust } \\ & \text { NN -> man } \\ & \text { NN -> film } \\ & \text { NN -> trust } \end{aligned}$

Probabilistic Grammar Conversion Original Grammar Chomsky Normal Form			
$\begin{aligned} & \mathbf{S} \rightarrow \mathbf{N P} \text { VP } \\ & \mathbf{S} \rightarrow \text { Aux NP VP } \end{aligned}$	0.8	$\mathbf{S} \rightarrow$ NP VP	0.8
	0.1	$\mathrm{S} \rightarrow \mathrm{X} 1 \mathrm{VP}$	0.1
		X1 \rightarrow Aux NP	1.0
$\mathbf{S} \rightarrow \mathrm{VP}$	0.1	$\mathrm{S} \rightarrow \underset{\mathbf{0 . 0 1}}{\text { book \| inclu }} \mathbf{0 . 0}$	
		$\mathbf{S} \rightarrow$ Verb NP	0.05
		$\mathbf{S} \rightarrow$ VP PP	0.03
NP \rightarrow Pronoun	0.2	$\mathrm{NP} \rightarrow \mathbf{I} \left\lvert\, \begin{array}{l\|l\|} \text { he } \mid \\ 0.1 & 0.02 \end{array}\right.$	
NP \rightarrow Proper-Noun	0.2	$\mathrm{NP} \rightarrow \underset{0.16}{\text { Houston }} \mid$	
NP \rightarrow Det Nominal Nominal \rightarrow Noun	0.6	NP \rightarrow Det Nomi	0.6
	0.3	$\text { Nominal } \rightarrow \underset{0.02}{\text { bool }}$	
$\begin{aligned} & \text { Nominal } \rightarrow \text { Nominal Noun } \\ & \text { Nominal } \rightarrow \text { Nominal PP } \\ & \text { VP } \rightarrow \text { Verb } \end{aligned}$	0.2	Nominal \rightarrow Nom	0.2
	0.5	Nominal \rightarrow Nom	0.5
	0.2	$\mathbf{V P} \rightarrow \underset{0.1}{\text { book }} \mid \underset{0.0}{\text { inc }}$	
$\begin{aligned} & \text { VP } \rightarrow \text { Verb NP } \\ & \text { VP } \rightarrow \text { VP PP } \\ & \mathbf{P P} \rightarrow \text { Prep NP } \end{aligned}$	0.5	VP \rightarrow Verb NP	0.5
	0.3	$\mathrm{VP} \rightarrow \mathrm{VP} \mathbf{P P}$	0.3
	1.0	$\mathbf{P P} \rightarrow$ Prep NP	1.0

Grammar questions
Can we determine if a sentence is grammatical? Given a sentence, can we determine the syntactic structure?
Can we determine how likely a sentence is to be grammatical? to be an English sentence?
Can we generate candidate, grammatical sentences?

