

A 4	min
AU	

Assignment 3

Quiz #1

How was the lab last Thursday?

	Simplif	ied View of L	ingu	uistics	
		Revenue al Cognal (pass) Maar vaari ne			
	Phonetics		•	/waddyasai/	
	Nikolai Trub	etzkoy in Grundzüge der Phonologie ((1939) de	fines phonology as	
	phonetics, wi	sound pertaining to the system of lan nich is "the study of sound pertaining t	o the act	s opposed to of speech."	
		http://en.wikipedia.org/wiki/Phone	ology		
	Phonetics: Phonology sounds are	"The study of the pronunciation of : "The areas of linguistics that de a differently realized in different	f words" scribes th environm	e systematic way that ents"	
		Tł	ne book		
1					

Context free grammar

$S \rightarrow NP VP$

left hand side ri (single symbol) (c

right hand side (one or more symbols)

Formally...

G = (NT, T, P, S)

NT: finite set of nonterminal symbols

- T: finite set of terminal symbols, NT and T are disjoint
- P: finite set of productions of the form $A \rightarrow \alpha$, $A \in NT$ and $\alpha \in (T \cup NT)^*$
- $\mathsf{S} \in \mathsf{NT}:\mathsf{start}\mathsf{ symbol}$

CFG: Example

Many possible CFGs for English, here is an example (fragment):

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $\mathsf{NP} \to \mathsf{DetP} \; \mathsf{N} \; | \; \mathsf{AdjP} \; \mathsf{NP}$

 $\mathsf{AdjP} \twoheadrightarrow \, \mathsf{Adj} \mid \mathsf{Adv} \, \mathsf{AdjP}$

 $N \rightarrow \text{ boy } \mid \text{girl}$

 $V \rightarrow sees \mid likes$ Adj $\rightarrow big \mid small$

 $\mathsf{Adv} \to \mathsf{very}$

 $\mathsf{DetP} \twoheadrightarrow \ a \ | \ \mathsf{the}$

Grammar questions

Can we determine if a sentence is grammatical?

Given a sentence, can we determine the syntactic structure?

Can we determine how likely a sentence is to be grammatical? to be an English sentence?

Can we generate candidate, grammatical sentences?

Which of these can we answer with a CFG? How?

Grammar questions

Can we determine if a sentence is grammatical?

Is it accepted/recognized by the grammar
Applying rules right to left, do we get the start symbol?

Given a sentence, can we determine the syntactic structure? Keep track of the rules applied...

Can we determine how likely a sentence is to be grammatical? to be an English sentence?

Not yet... no notion of "likelihood" (probability)

Can we generate candidate, grammatical sentences?

Start from the start symbol, randomly pick rules that apply (i.e. left hand side matches)

Derivations in a CFG

$$\begin{split} S &\rightarrow NP \ VP \\ VP &\rightarrow V \ NP \\ NP &\rightarrow DetP \ N \ | \ AdjP \ NP \\ AdjP &\rightarrow Adj \ | \ Adv \ AdjP \\ N &\rightarrow boy \ | \ girl \\ V &\rightarrow sees \ | \ likes \\ Adj &\rightarrow big \ | \ small \\ Adv &\rightarrow very \\ DetP &\rightarrow a \ | \ the \end{split}$$

S

What can we do?

Derivations in a CFG

$S \rightarrow NP VP$

 $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{VNP} \\ \mathsf{NP} \rightarrow \mathsf{DetP} \; \mathsf{N} \; | \; \mathsf{AdjP} \; \mathsf{NP} \\ \mathsf{AdjP} \rightarrow \; \mathsf{Adj} \; | \; \mathsf{Adv} \; \mathsf{AdjP} \\ \mathsf{N} \rightarrow \; \mathsf{boy} \; | \; \mathsf{girl} \\ \mathsf{V} \rightarrow \; \mathsf{sees} \; | \; \mathsf{likes} \\ \mathsf{Adj} \rightarrow \; \mathsf{big} \; | \; \mathsf{small} \\ \mathsf{Adv} \rightarrow \; \mathsf{very} \\ \mathsf{DetP} \rightarrow \; \mathsf{a} \; | \; \mathsf{the} \end{array}$

S

Derivations in a CFG $S \rightarrow NP VP$ $VP \rightarrow V NP$ $NP \rightarrow DetP N \mid AdjP NP$ $AdjP \rightarrow Adj \mid Adv AdjP$ NP VP $N \rightarrow boy | girl V \rightarrow sees | likes$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$

Derivations in a CFG

 $S \rightarrow NP VP$ $VP \rightarrow V NP$ $NP \rightarrow DetP N \mid AdjP NP$ $\begin{array}{l} AdjP \rightarrow Adj \mid Adv AdjP \\ N \rightarrow boy \mid girl \\ V \rightarrow sees \mid likes \end{array}$ $\begin{array}{l} \operatorname{Adj} \rightarrow \ \operatorname{big} \ | \ \operatorname{small} \\ \operatorname{Adv} \rightarrow \ \operatorname{very} \\ \operatorname{DetP} \rightarrow \ a \ | \ \operatorname{the} \end{array}$

DetP N VP

Derivations in a CFG

 $S \rightarrow NP VP$ $VP \rightarrow V NP$ NP \rightarrow DetP N | AdjP NP $AdjP \rightarrow Adj | Adv AdjP$ $N \rightarrow boy | girl$ $N \rightarrow boy | gril$ $<math>V \rightarrow sees | likes$ $Adj \rightarrow big | small$ $Adv \rightarrow very$ $DetP \rightarrow a | the$

DetP N VP

Derivations in a CFG

 $\mathsf{S}\to\mathsf{NP}\;\mathsf{VP}$ $VP \rightarrow V NP$ NP \rightarrow DetP N | AdjP NP $AdjP \rightarrow Adj | Adv AdjP$ $N \rightarrow boy | girl$ $N \rightarrow boy | gin$ $V \rightarrow sees | likes$ $Adj \rightarrow big | small$ $Adv \rightarrow very$ $DetP \rightarrow a | the$

the boy VP

Derivations in a CFG

$\begin{array}{l} S \rightarrow NP \; VP \\ VP \rightarrow V \; NP \\ NP \rightarrow DetP \; N \; | \; AdjP \; NP \\ AdjP \rightarrow Adj \; | \; Adv \; AdjP \\ N \rightarrow boy \; | \; girl \\ V \rightarrow sees \; | \; likes \\ Adj \rightarrow big \; | \; small \\ Adv \rightarrow very \\ DetP \rightarrow a \; | \; the \end{array}$

the boy likes NP

Derivations in a CFG

 $\begin{array}{l} S \rightarrow NP \; VP \\ VP \rightarrow V \; NP \\ NP \rightarrow DetP \; N \; \mid AdjP \; NP \\ AdjP \rightarrow Adj \; \mid Adv \; AdjP \\ N \rightarrow boy \; \mid girl \\ V \rightarrow sees \; \mid likes \\ Adj \rightarrow big \; \mid small \\ Adv \rightarrow very \\ DetP \rightarrow a \; \mid the \end{array}$

the boy likes a girl

Parsing

Parsing is the field of NLP interested in automatically determining the syntactic structure of a sentence

parsing can be thought of as determining what sentences are "valid" English sentences

As a by product, we often can get the structure

Parsing

Given a CFG and a sentence, determine the possible parse tree(s)

S->NP VP	l eat sushi with tuna
NP -> N	
NP -> PRP	
NP -> N PP	What parse frees are possible for this
VP -> V NP	sentence?
VP -> V NP PP	
PP -> IN N	
PRP -> 1	How did you do it?
V -> eat	
N -> sushi	
N -> tuna	What if the arammar is much larger?
IN -> with	what it me grammar is moch largery

A Simple PCFG									
Probabilities!									
	S	\rightarrow	NP VP	1.0		NP	\rightarrow	NP PP	0.4
	VP	\rightarrow	V NP	0.7		NP	\rightarrow	astronomers	0.1
	VP	\rightarrow	VP PP	0.3		NP	\rightarrow	ears	0.18
	PP	\rightarrow	P NP	1.0		NP	\rightarrow	saw	0.04
	Ρ	\rightarrow	with	1.0		NP	\rightarrow	stars	0.18
	V	\rightarrow	saw	1.0		NP	\rightarrow	telescope	0.1

Normal Forms	CNF Grammar	
There are weakly equivalent normal forms (Chomsky Normal Form, Greibach Normal Form)	S -> VP VP -> VB NP VP -> VB NP PP	S -> VP VP -> VB NP VP -> VP2 PP
 A CFG is in Chomsky Normal Form (CNF) if all productions are of one of two forms: A → BC with A, B, C nonterminals A → a, with A a nonterminal and a a terminal Every CFG has a weakly equivalent CFG in CNF 	VP -> V6 NP PP NP -> DT NN NP -> NN NP -> NN DT -> the IN -> with VB -> film VB -> film NN -> man NN -> film NN -> trust	VP2> VB NP NP -> DT NN NP -> NN NP -> NP PP PP -> IN NP DT -> the IN -> with VB -> film VB -> film NN -> film NN -> trust

Probabilistic Original Grammar	Gr	ammar Conversion Chomsky Normal Form	
$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		$X1 \rightarrow Aux NP$	1.0
$S \rightarrow VP$	0.1	$S \rightarrow book include prefer$	
		0.01 0.004 0.006	
		$S \rightarrow Verb NP$	0.05
		$S \rightarrow VP PP$	0.03
$NP \rightarrow Pronoun$	0.2	$NP \rightarrow I \mid he \mid she \mid me$	
		0.1 0.02 0.02 0.06	
NP → Proper-Noun	0.2	$NP \rightarrow Houston \mid NWA$	
-		0.16 .04	
NP → Det Nominal	0.6	$NP \rightarrow Det Nominal$	0.6
Nominal → Noun	0.3	Nominal → book flight meal money	
		0.03 0.15 0.06 0.06	
Nominal → Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal → Nominal PP	0.5	Nominal → Nominal PP	0.5
$VP \rightarrow Verb$	0.2	VP → book include prefer	
		0.1 0.04 0.06	
$VP \rightarrow Verb NP$	0.5	$VP \rightarrow Verb NP$	0.5
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3
$PP \rightarrow Prep NP$	1.0	$PP \rightarrow Prep NP$	1.0

