

Modeling natural text
You're goal is to create a probabilistic model of natural (human) text. What are some of the questions you might want to ask about a text?
What are some of the phenomena that occur in natural text that you might need to consider/model?

| Modeling natural text |
| :---: | :---: |
| Questions |
| what are the key topics in the text? |
| what is the sentiment of the text? |
| who/what does the article refer to? |
| what are the key phrases? |

Word burstiness in models $\mathrm{p}($ "Clinton" $=2$ |political $)=0.05$

Many models incorrectly predict:
$p($ "Clinton" $=2 \mid$ political $) \approx p(\text { "Clinton" }=1 \mid \text { political })^{2}$
$0.05 \neq \mathbf{0 . 0 1 4 4}\left(0.12^{2}\right)$

Generative Story

To apply a model, we're given a document and we obtain the probability

We can also ask how a given model would generate a document

This is the "generative story" for a model

Dirichlet Compound Multinomial

$p\left(x_{1} x_{2} \ldots x_{m} \mid \alpha\right)=\int_{\theta} p(\mathrm{x} \mid \theta) p(\theta \mid \alpha) d \theta$

$\frac{\text { Dirichlet Compound Multinomial }}{p(\mathbf{x} \mid \alpha)}=$	$\int_{\theta} \frac{\mid \mathbf{x}!}{\prod_{w=1}^{W} x_{w}!}\left(\prod_{w=1}^{W} \theta_{w}^{x_{w}}\right) \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \prod_{w=1}^{W} \theta_{w}^{\alpha_{w}-1} d \theta$
	$=\frac{\mid \mathbf{x}!}{\prod_{w=1}^{W} x_{w}!} \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}^{W}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \int_{\theta}^{W} \prod_{w=1}^{W} \theta_{w}^{\alpha_{w}+x_{w}-1} d \theta$
	$=\frac{\mid \mathbf{x}!}{\prod_{w=1}^{W} x_{w}!} \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \prod_{w=1}^{W} \frac{\Gamma\left(x_{w}+\alpha_{w}\right)}{\Gamma\left(\alpha_{w}\right)}$

Experiments

Modeling one class: document modeling

Modeling alternative classes:
classification

Perplexity results	
20 newsgroups data set	
Multinomial	92.1
DCM	58.7
Lower is better - ideally the model would have a perplexity of 0 !	
Significant increase in modeling performance!	

| |
| :--- | :--- | :--- |
| Classification results |
| Accuracy = number correct/ number of documents |
| Industry 20 Newsgroups
 Multinomial 0.600 0.853
 DCM 0.806 0.890 |
| (results are on par with state of
 the art discriminative approaches!) |

Next steps in text modeling	
Better grounded models like DCM ALSO perform better in applications (e.g. classification)	
Better models	Applications of models
text substitutability	multi-class data modeling (e.g. clustering)
(model co-occurrence)	text similarity
hierarchical models	
handling short phrases tweets, search queries)	language generation applications (speech recognition, translation, summarization)

Questions?

