

Admin

Assignment 7 out soon (due next Friday at 5 pm)

Quiz \#3 next Tuesday

- Text similarity -> this week (though, light on ML)

Project proposal presentations Tuesday

Basic steps for probabilistic modeling

Step 1: pick a model	Probabilistic models Step 2: figure out how to estimate the probabilities for the model
Which model do we use, i.e. how do we calculate p(feature, label)?	
Step 3 (optional): deal with overfitting	How do train the model, i.e. how to we we estimate the probabilities for the model?

Naive Bayes assumption
$p($ features,label $)=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)$
$p\left(x_{j} \mid y, x_{1}, x_{2}, \ldots, x_{j-1}\right)=p\left(x_{j} \mid y\right)$
What does this assume?

Naïve Bayes model

$p($ features,label $)=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)$

$$
=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right) \quad \text { naiive Bayes assumption }
$$

$p\left(x_{i} \mid y\right)$ is the probability of a particular feature value given the label
How do we model this?

- for binary features (e.g., "banana" occurs in the text)
- for discrete features (e.g., "banana" occurs x_{i} times)
for real valued features (e.g, the text contains x_{i} proportion of verbs)

Naïve Bayes assumption

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)
$$

$$
p\left(x_{j} \mid y, x_{1}, x_{2}, \ldots, x_{j-1}\right)=p\left(x_{j} \mid y\right)
$$

Assumes feature i is independent of the the other features given the label

$p(x \mid y)$

Binary features (aka, Bernoulli Naïve Bayes) :

$$
p\left(x_{j} \mid y\right)=\left\{\begin{array}{cc}
\theta_{j} & \text { if } x_{i}=1 \\
1-\theta_{j} & \text { otherwise }
\end{array} \quad\right. \text { biased coin toss! }
$$

Other features types:

Could use a lookup table for each value, but doesn't generalize well
Better, model as a distribution:

- gaussian (i.e. normal) distribution
- poisson distribution
- multinomial distribution (more on this later)

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

Maximum likelihood estimates

$$
\begin{aligned}
p(y) & =\frac{\operatorname{count}(y)}{n} \\
p\left(x_{j} \mid y\right) & =\frac{\frac{\text { number of examples with label }}{\operatorname{count}\left(x_{j}, y\right)}}{\operatorname{count}(y)} \quad
\end{aligned}
$$

Text classification
$p(y)=\frac{\operatorname{count}(y)}{n}$
$p\left(w_{j} \mid y\right)=\frac{\operatorname{count}\left(w_{j}, y\right)}{\operatorname{count}(y)}$
What are these counts for text classification with unigram features? w_{i}, whether or not word w_{i} occurs in the text

text classification	$\underline{\underline{\underline{Z}}}$ $p(y)=\frac{\operatorname{count}(y)}{n}$ $p\left(w_{j} \mid y\right)=\frac{\operatorname{count}\left(w_{j}, y\right)}{\operatorname{count}(y)}$
$\frac{\text { number of texts with label }}{\text { total number of texts }}$	
number of texts with the label with word w_{i}	
number of texts with label	

Generative Story
To classify with a model, we're given an example and we obtain
the probability
We can also ask how a given model would generate an example
This is the "generative story" for a model
Looking at the generative story can help understand the model
We also can use generative stories to help develop a model

Bernoulli NB generative story
$\qquad p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
What is the generative story for the NB model?

Bernoulli NB generative story
$\qquad p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
1. \quadPick a label according to $\mathrm{p}(\mathrm{y})$ roll a biased, num_labels-sided die 2. For each feature: \quad Flip a biased coin: if heads, include the feature if tails, don't include the feature What does this mean for text classification, assuming unigram features?

Bernoulli NB generative story
$\qquad p(y) \prod_{j=1}^{m} p\left(w_{j} \mid y\right)$
1.Pick a label according to $\mathrm{p}(\mathrm{y})$ roll a biased, num_labels-sided die 2. For each word in your vocabulary: Flip a biased coin: if heads, include the word in the text if tails, don't include the word
-

Bernoulli NB
$p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
Pros/cons?

Bernoulli NB
Pros
\square Easy to implement
\square Fast!
\square Can be done on large data sets
Cons
\square Naïve Bayes assumption is generally not true
\square Performance isn't as good as more complicated models
\square For text classification (and other sparse feature
domains) the $p\left(x_{i}=0 \mid y\right)$ can be problematice

$\left.\begin{array}{|l|l|l|}\hline \text { A digression: rolling dice } \\ \text { What is the probability distribution over possible single rolls? } \\ 1 / 6 & 1 / 6 & 1 / 6 \\ 1 & 1 / 6 & 1 / 6 \\ \hline & 3 & 4\end{array}\right]$

A digression: rolling dice

1. What it the probability of rolling a 1 and a 5 (in any order)? $(1 / 4 * 1 / 8) * 2 \equiv 1 / 16$
prob. of those two rolls number of ways that can happe
(1,5 and 5,1)
2. Two 1 s and a 5 (in any order)? $\left((1 / 4)^{2} * 1 / 8\right) * 3=3 / 128$
3. Five 1 s and two 5 s (in any order)? $\left((1 / 4)^{5} *(1 / 8)^{3}\right) * 21=21 / 524,288=0.00004 \quad$ General formula?

$1 / 4$	$1 / 8$	$1 / 8$	$1 / 4$	$1 / 8$	$1 / 8$
1	2	3	4	5	6

Multinomial distribution

number of different ways to probability of particular counts get those counts

$$
\begin{array}{ccccccl}
\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4} & \theta_{5} & \theta_{0} & \\
1 & 2 & 3 & 4 & 5 & 6 & \ldots
\end{array}
$$

$$
p\left(x_{1}, x_{2}, \ldots, x_{m} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)=\frac{n!}{\prod_{j=1}^{m} x_{j}!} \prod_{j=1}^{m} \theta_{j}^{x_{j}}
$$

What are θ_{j} ?
Are there any constraints on the values that they can take?

$$
\begin{array}{ccccccc}
\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4} & \theta_{5} & \theta_{0} & \\
1 & 2 & 3 & 4 & 5 & 6 & \ldots
\end{array}
$$

Back to words...
Why the digression?

$$
\left(x_{1}, x_{2}, \ldots, x_{m} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)=\frac{n!}{\prod_{j=1}^{m} x_{j}!} \prod_{j=1}^{m} \theta_{j}^{x_{j}}
$$

Drawing words from a bag is the same as rolling a die!
number of sides $=$ number of words in the vocabulary

Basic steps for probabilistic modeling

Model each class as a multinomial:

Step 2: figure out how to estimate the probabilities for the model

How do we train the model, i.e. estimate θ_{i} for each class?

Multinomial finalized
Training:
$\quad \square$ Calculate p(label)
\square For each label, calculate $\theta \mathrm{s}$

$$
\theta_{j}=\frac{\operatorname{count}\left(w_{j}, y\right)}{\sum_{k=1}^{m} \operatorname{count}\left(w_{k}, y\right)}
$$

Classification:
\square Get word counts
\square For each label you had in training, calculate:
$p(y) \prod_{j=1}^{m} \theta_{j}^{x_{j}}$

and pick the largest

