
9/28/13	

1	

FEATURE PRE-PROCESSING

David Kauchak
CS 451 – Fall 2013

Admin

Assignment 3

So far…

1.  Throw out outlier examples

Feature pruning/selection

Good features provide us information that helps us
distinguish between labels. However, not all features are
good

Feature pruning is the process of removing “bad” features

Feature selection is the process of selecting “good” features

What makes a bad feature and why would we have them
in our data?

9/28/13	

2	

Bad features

Each of you are going to generate a feature for our
data set: pick 5 random binary numbers

f1 f2 … label

I’ve already labeled these examples
and I have two features

Bad features

label

1
0
1
1
0

If we have a “random” feature, i.e. a
feature with random binary values,
what is the probability that our
feature perfectly predicts the label?

Bad features

label

1
0
1
1
0

fi

1
0
1
1
0

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Is that the only way to
get perfect prediction?

Bad features

label

1
0
1
1
0

fi

0
1
0
0
1

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Total = 1/32+1/32 = 1/16

Why is this a problem?

Although these features perfectly
correlate/predict the training data,
they will generally NOT have any
predictive power on the test set!

9/28/13	

3	

Bad features

label

1
0
1
1
0

fi

0
1
0
0
1

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Total = 1/32+1/32 = 1/16

Is perfect correlation the only
thing we need to worry
about for random features?

Bad features

label

1
0
1
1
0

fi

1
0
1
0
0

Any correlation (particularly any strong
correlation) can affect performance!

Noisy features

Adding features can give us more information, but not always

Determining if a feature is useful can be challenging

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride?

Trail Mountain Rainy Heavy D YES

Trail Mountain Sunny Light C- YES

Road Mountain Snowy Light B YES

Road Mountain Sunny Heavy A YES

Trail Normal Snowy Light D+ NO

Trail Normal Rainy Heavy B- NO

Road Normal Snowy Heavy C+ YES

Road Normal Sunny Light A- NO

Trail Normal Sunny Heavy B+ NO

Trail Normal Snowy Light F NO

Trail Normal Rainy Light C YES

Noisy features

These can be particularly problematic in problem
areas where we automatically generate features

Features

(1, 1, 1, 0, 0, 1, 0, 0, …)

cli
nt

on
 sa

id

sa
id

 b
an

an
a

ca
lif

or
nia

 sc
ho

ol
s

ac
ro

ss
th

e
tv

 b
an

an
a

wr
on

g
wa

y
ca

pi
ta

l c
ity

Clinton said banana
repeatedly last week on tv,
“banana, banana, banana”

9/28/13	

4	

Noisy features

Ideas for removing noisy/random features?

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride?

Trail Mountain Rainy Heavy D YES

Trail Mountain Sunny Light C- YES

Road Mountain Snowy Light B YES

Road Mountain Sunny Heavy A YES

Trail Normal Snowy Light D+ NO

Trail Normal Rainy Heavy B- NO

Road Normal Snowy Heavy C+ YES

Road Normal Sunny Light A- NO

Trail Normal Sunny Heavy B+ NO

Trail Normal Snowy Light F NO

Trail Normal Rainy Light C YES

Removing noisy features

The expensive way:
-  Split training data into train/dev
-  Train a model on all features
-  for each feature f:

-  Train a model on all features – f
-  Compare performance of all vs. all-f on dev set

-  Remove all features where decrease in performance
between all and all-f is less than some constant

Feature ablation study Issues/concerns?

Removing noisy features

Binary features:
remove “rare” features, i.e. features that only occur (or
don’t occur) a very small number of times

Real-valued features:
remove features that have low variance

In both cases, can either use thresholds, throw away lowest
x%, use development data, etc.

Why?

Some rules of thumb
for the number of features

Be very careful in domains where:
¤  the number of features > number of examples
¤  the number of features ≈ number of examples
¤  the features are generated automatically
¤  there is a chance of “random” features

In most of these cases, features should be removed
based on some domain knowledge (i.e. problem-
specific knowledge)

9/28/13	

5	

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features

Feature selection

Let’s look at the problem from the other direction, that
is, selecting good features.

What are good features?

How can we pick/select them?

Good features

A good feature correlates well with the label

label

1
0
1
1
0

1
0
1
1
0

0
1
0
0
1

1
1
1
1
0

…

How can we identify this?
-  training error (like for DT)
-  correlation model
-  statistical test
-  probabilistic test
-  …

Training error feature selection

-  for each feature f:
-  calculate the training error if only feature f were used

to pick the label

-  rank each feature by this value
-  pick top k, top x%, etc.

-  can use a development set to help pick k or x

9/28/13	

6	

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Would our three classifiers (DT, k-NN and perceptron)
learn the same models on these two data sets?

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Decision trees don’t care about scale, so
they’d learn the same tree

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

k-NN: NO! The distances are biased based on feature magnitude.

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

9/28/13	

7	

Feature normalization

Length Weight Label

4 4 Apple

7 5 Apple

5 8 Banana

Length Weight Label

40 4 Apple

70 5 Apple

50 8 Banana

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

Which of the two examples are
closest to the first?

Feature normalization

Length Weight Label

4 4 Apple

7 5 Apple

5 8 Banana

Length Weight Label

40 4 Apple

70 5 Apple

50 8 Banana

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

D = (7− 4)2 + (5− 4)2 = 10

D = (5− 4)2 + (8− 4)2 = 17

D = (70− 40)2 + (5− 4)2 = 901

D = (70− 50)2 + (8− 4)2 = 416

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

perceptron: NO!
The classification and weight update are based on the
magnitude of the feature value

Geometric view of perceptron update

 for each wi:
 wi = wi + fi*label

weights

example

Geometrically, the perceptron update rule is equivalent to
“adding” the weight vector and the feature vector

9/28/13	

8	

Geometric view of perceptron update

 for each wi:
 wi = wi + fi*label

weights

example

Geometrically, the perceptron update rule is equivalent to
“adding” the weight vector and the feature vector

new weights

Geometric view of perceptron update

weights

example
weights

example

same f1 value, but larger f2

If the features dimensions differ in scale, it can bias the update

Geometric view of perceptron update

If the features dimensions differ in scale, it can bias the update

weights

example

weights

example new weights
new weights

-  different separating hyperplanes
-  the larger dimension becomes much more important

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

How do we fix this?

9/28/13	

9	

Feature normalization

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Modify all values for a given feature

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0. How do we do this?

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias. Ideas?

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias:

¤ Variance scaling: divide each value by the std dev
¤ Absolute scaling: divide each value by the largest value

Pros/cons of either scaling technique?

9/28/13	

10	

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features
4.  Normalize feature values

1.  center data
2.  scale data (either variance or absolute)

Example normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Any problem with this?
Solutions?

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

70 60 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

length(x) = x = x1
2 + x2

2

9/28/13	

11	

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

length(x) = x = x1
2 + x2

2 +...+ xn
2

Example length normalization

Make all examples have length = 1

Divide each feature value by ||x||

length(x) = x = x1
2 + x2

2 +...+ xn
2

-  Prevents a single example from being too impactful
-  Equivalent to projecting each example onto a unit

sphere

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features
4.  Normalize feature values

1.  center data
2.  scale data (either variance or absolute)

5.  Normalize example length
6.  Finally, train your model!

What about testing?

pre-
proc

ess
 data

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

training data
(labeled examples)

model/
classifier

lea
rn Terrain Unicycle-

type
Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

“better” training data

9/28/13	

12	

What about testing?

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

test data

model/
classifier

cla
ssif

y

prediction

What about testing?

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

test data

model/
classifier

cla
ssif

y

prediction

pre-
proc

ess
 data

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

How do we preprocess the test data?

Test data preprocessing

1.  Throw out outlier examples
2.  Remove noisy features

3.  Pick “good” features

4.  Normalize feature values
1.  center data
2.  scale data (either variance or absolute)

5.  Normalize example length

Which of these do we need to do on test data?
Any issues?

Test data preprocessing

1.  Throw out outlier examples
2.  Remove irrelevant/noisy features

3.  Pick “good” features

4.  Normalize feature values
1.  center data
2.  scale data (either variance or absolute)

5.  Normalize example length

Remove/pick same features

Do these

Do this

Whatever you do on training, you have to do the
EXACT same on testing!

9/28/13	

13	

Normalizing test data

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias:

¤ Variance scaling: divide each value by the std dev
¤ Absolute scaling: divide each value by the largest value

What values do we use when normalizing testing data?

Normalizing test data

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias:

¤ Variance scaling: divide each value by the std dev
¤ Absolute scaling: divide each value by the largest value

Save these from training normalization!

Normalizing test data

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

test data

model/
classifier

cla
ssif

y

prediction

pr
e-

pr
oc

es
s

da
ta

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

training data
(labeled examples)

model/
classifier

lea
rn Terrain Unicycle-

type
Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

mean, std dev, max,…

Features pre-processing summary

1.  Throw out outlier examples

2.  Remove noisy features

3.  Pick “good” features

4.  Normalize feature values
1.  center data

2.  scale data (either variance or absolute)

5.  Normalize example length

Many techniques for preprocessing
data

Which will work well will depend
on the data and the classifier

Try them out and evaluate how
they affect performance on dev
data

Make sure to do exact same pre-
processing on train and test

