

Admin

Assignment 1... how'd it go?

Assignment 2

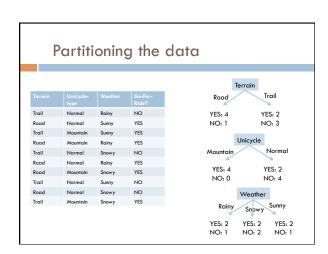
- out soon
- building decision trees
- Java with some starter code
- competition
- extra credit

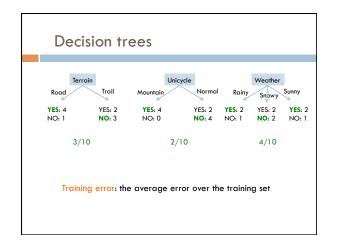
Building decision trees

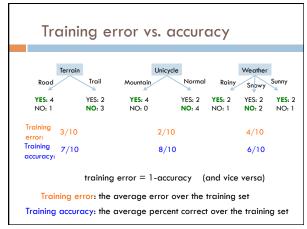
Base case: If all data belong to the same class, create a leaf node with that label

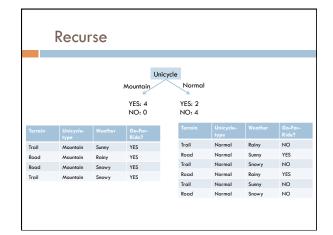
Otherwise:

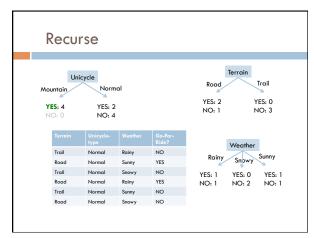
- calculate the "score" for each feature if we used it to split the data
- pick the feature with the highest score, partition the data based on that data value and call recursively

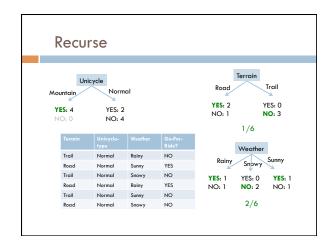


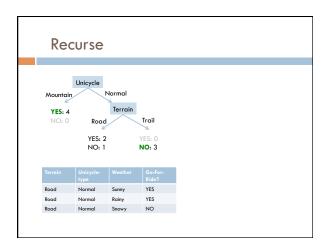


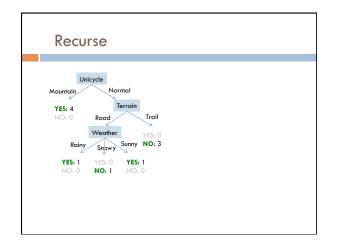


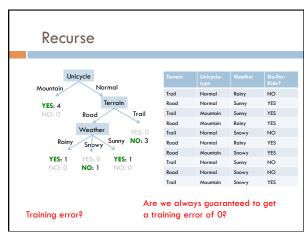


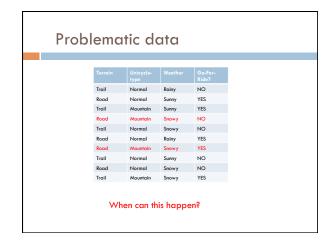


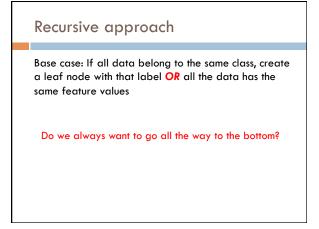


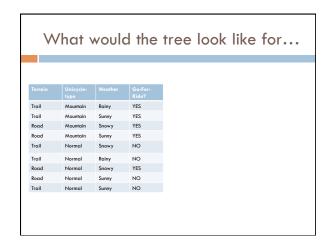


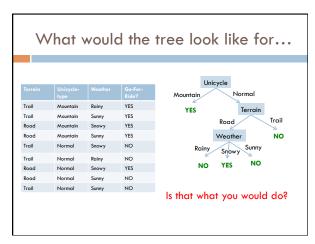


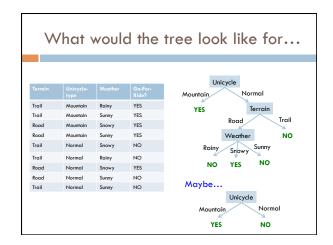


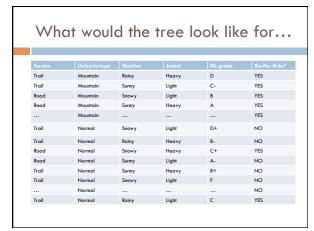


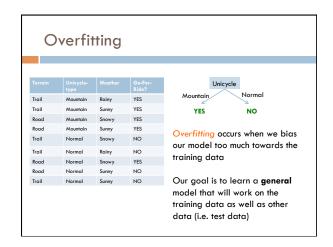


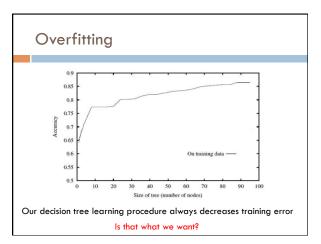


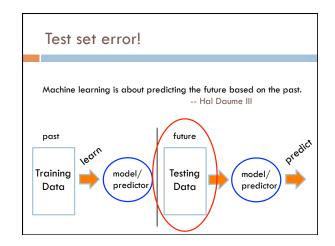


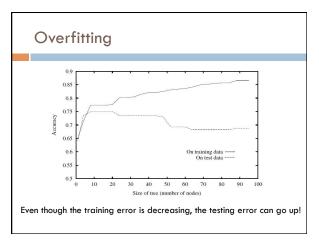


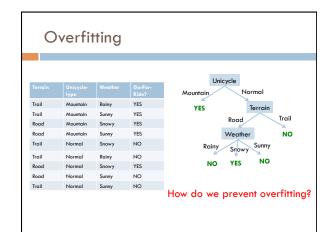


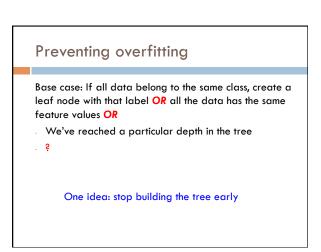










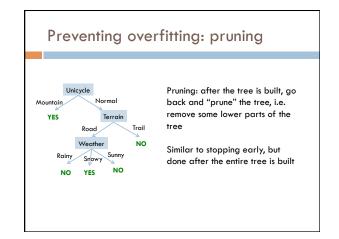


Preventing overfitting

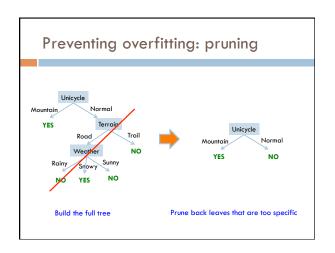
Base case: If all data belong to the same class, create a leaf node with that label **OR** all the data has the same feature values **OR**

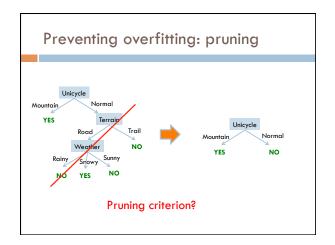
- We've reached a particular depth in the tree
- We only have a certain number/fraction of examples remaining
- We've reached a particular training error
- Use development data (more on this later)

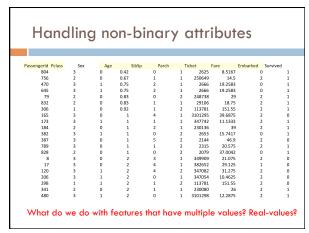
. . . .

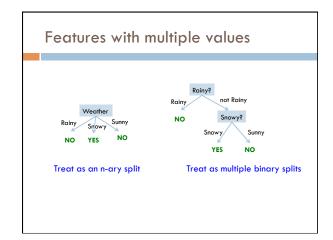


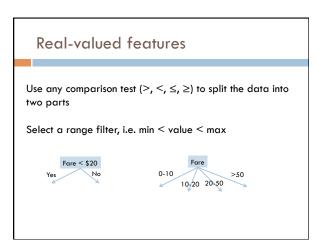
Preventing overfitting: pruning Unicycle Mountain YES Terrain Road Trail Weather NO Rainy Snowy NO YES NO Build the full tree









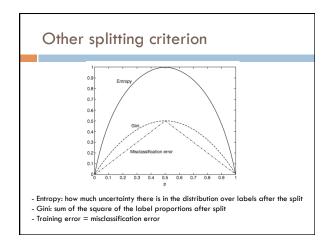


Other splitting criterion

Otherwise:

- calculate the "score" for each feature if we used it to split the data
- pick the feature with the highest score, partition the data based on that data value and call recursively

We used training error for the score. Any other ideas?



Decision trees

Good? Bad?

Decision trees: the good

Very intuitive and easy to interpret

Fast to run and fairly easy to implement (Assignment 2 ©)

Historically, perform fairly well (especially with a few more tricks we'll see later on)

No prior assumptions about the data

Decision trees: the bad

Be careful with features with lots of values

ID	Terrain	Unicycle -type	Weather	Go-For- Ride?
1	Trail	Normal	Rainy	NO
2	Road	Normal	Sunny	YES
3	Trail	Mountain	Sunny	YES
4	Road	Mountain	Rainy	YES
5	Trail	Normal	Snowy	NO
6	Road	Normal	Rainy	YES
7	Road	Mountain	Snowy	YES
8	Trail	Normal	Sunny	NO
9	Road	Normal	Snowy	NO
10	Trail	Mountain	Snowy	YES

Which feature would be at the top here?

Decision trees: the bad

Can be problematic (slow, bad performance) with large numbers of features

Can't learn some very simple data sets (e.g. some types of linearly separable data)

Pruning/tuning can be tricky to get right

Final DT algorithm

Base cases:

- If all data belong to the same class, pick that label
- 2. If all the data have the same feature values, pick majority label
- 3. If we're out of features to examine, pick majority label
- 4. If the we don't have any data left, pick majority label of parent
 - If some other stopping criteria exists to avoid overfitting, pick majority label

Otherwise:

- calculate the "score" for each feature if we used it to split the data
- pick the feature with the highest score, partition the data based on that data value and call recursively