

Admin
Assignment 7
CS Lunch on Thursday

Priors

Coin 1data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads was for each of these coins, what would you say?

Training revisited

From a probability standpoint, what we're really doing when we're training the model is selecting the Θ that maximizes:

$$
p(\theta \mid \text { data })
$$

i.e.

$$
\operatorname{argmax}_{\theta} p(\theta \mid \text { data })
$$

That we pick the most likely model parameters given the data

Estimating revisited
What are each of these probabilities?
$p(\theta \mid$ data $)=\frac{p(\text { data } \mid \theta) p(\theta)}{p(\text { data })}$

Priors
likelihood of the data under the model
\qquadprobability of different parameters, call the prior
$-\quad$ Assumes a uniform prior, i.e. all Θ are equally likely!
- Relies solely on the likelihood

Prior: another view

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

Joint models vs conditional models

We've been trying to model the joint distribution (i.e. the data generating distribution):

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)
$$

However, if all we're interested in is classification, why not directly model the conditional distribution:

$$
p\left(y \mid x_{1}, x_{2}, \ldots, x_{m}\right)
$$

A first try: linear

$$
p\left(y \mid x_{1}, x_{2}, \ldots, x_{m}\right)=x_{1} w_{1}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b
$$

Any problems with this?

- Nothing constrains it to be a probability - Could still have combination of features and weight that exceeds 1 or is below 0

Odds ratio

Rather than predict the probability, we can predict the ratio of $1 / 0$ (positive/negative)

Predict the odds that it is 1 (true): How much more likely is 1 than 0.

Does this help us?
$\frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{P\left(0 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=\frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{1-P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=x_{1} w_{1}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b$

Odds ratio

Logistic regression

How would we classify examples once we had a trained model?

$$
\log \frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{1-P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b
$$

If the sum >0 then $p(1) / p(0)>1$, so positive
if the sum <0 then $p(1) / p(0)<1$, so negative

Still a linear classifier (decision boundary is a line)

MLE logistic regression

Find the parameters that maximize the likelihood (or log-likelihood) of the data:

$$
\begin{aligned}
\log \text {-likelihood } & =\sum_{i=1}^{n} \log \left(p\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{n} \log \left(\frac{1}{1+e^{-y_{i}\left(m_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+t\right)}}\right) \quad \text { assume labels } 1,-1 \\
& =\sum_{i=1}^{n}-\log \left(1+e^{-y_{i}\left(w_{i} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+t\right)}\right)
\end{aligned}
$$

MLE logistic regression

Surrogate loss functions:

Overfitting
$\qquad$$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}\right)$ If we minimize this loss function, in practice, the results great and we tend to overfit aren't
Solution?

Regularization/prior

L1 regularization:
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}\right)+\lambda\|w\|$

Laplacian prior:

$$
\begin{array}{r}
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}\right)+\frac{1}{\sigma}\|w\| \\
\lambda=\frac{1}{2 \sigma^{2}}
\end{array}
$$

Logistic regression
Why is it called logistic regression?

Error minimization

How do we find the minimum of an equation?

$$
\operatorname{error}(h)=\sum_{i=1}^{n}\left|y_{i}-h\left(f_{i}\right)\right|
$$

Take the derivative, set to 0 and solve (going to be a min or a max)

Any problems here?

Ideas?

Logistic function

$$
\text { logistic }=\frac{1}{1+e^{-x}}
$$

