SOFT LARGE MARGIN CLASSIFIERS

David Kauchak CS 451 – Fall 2013 Admin

Assignment 5

Midterm

Friday's class will be in MBH 632

CS lunch talk Thursday

Java tips for the data

-Xmx

-Xmx2g

http://www.youtube.com/watch?v=u0VoFU82GSw

2

Soft margin SVM	
$\min_{w,b} \ w\ ^2 + C \sum_i \varsigma_i$ subject to: $y_i (w \cdot x_i + b) \ge 1 - \varsigma_i \forall i$ $\varsigma_i \ge 0$	
Still a quadratic optimization problem!	

Hinge loss!		
0/1 loss:	$l(y,y') = 1 \begin{bmatrix} yy' \le 0 \end{bmatrix}$	
Hinge:	$l(y, y') = \max(0, 1 - yy')$	
Exponential:	$l(y, y') = \exp(-yy')$	
Squared loss:	$l(y, y') = (y - y')^2$	

