

Admin
Assignment 5

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right] \quad \begin{aligned}
& \text { Find } w \text { and } \mathrm{b} \text { that } \\
& \text { minimize the } 0 / 1 \text { loss }
\end{aligned}
$$

$\left.\begin{array}{|c}\text { Model-based machine learning } \\ \text { 1. pick a model } \\ 0=b+\sum_{j=1}^{m} w_{j} f_{j} \\ \text { 2. pick a criteria to optimize (aka objective function) } \\ \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \\ \begin{array}{l}\text { use a convex surrogate } \\ \text { loss function }\end{array} \\ \operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)\end{array} \begin{array}{l}\text { Find wand b that } \\ \text { minimize the } \\ \text { surrogate loss }\end{array}\right]$

Finding the minimum

You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

Gradient descent

\square pick a starting point (w)
\square repeat until loss doesn't decrease in all dimensions:

- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$
w_{j}=w_{j}-\eta \frac{d}{d w_{j}} \operatorname{loss}(w)
$$

Some maths

$$
\begin{aligned}
\frac{d}{d w_{j}} \text { loss } & =\frac{d}{d w_{j}} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \\
& =\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \frac{d}{d w_{j}}-y_{i}\left(w \cdot x_{i}+b\right) \\
& =\sum_{i=1}^{n}-y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
\end{aligned}
$$

Gradient descent
ם pick a starting point (w)
ם repeat until loss doesn't decrease in all dimensions:
■ pick a dimension
■ move a small amount in that dimension towards decreasing loss (using
the derivative)
$w_{j}=w_{j}+\eta \sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
What is this doing?

Perceptron learning algorithm!

$$
\begin{aligned}
& \text { repeat until convergence (or for some } \# \text { of iterations): } \\
& \text { for each training example }\left(f_{1}, f_{2}, \ldots, f_{m},\right. \text { label): } \\
& \text { prediction }=b+\sum_{j=1}^{m} w_{j} f_{j} \\
& \text { if prediction * label } \leq 0 \text { : // they don't agree } \\
& \text { for each } w_{i} \text { : } \\
& w_{i}=w_{i}+f_{i}^{*} \text { label } \\
& b=b+\text { label } \\
& \qquad \begin{array}{l}
w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \\
\quad \text { or } \\
w_{j}=w_{j}+x_{i j} y_{i} c \quad \text { where } c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
\end{array}
\end{aligned}
$$

The constant

The constant

Overfitting revisited: regularization

A regularizer is an additional criteria to the loss function to make sure that we don't overfit

It's called a regularizer since it tries to keep the parameters more normal/regular

It is a bias on the model forces the learning to prefer certain types of weights over others

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w, b)
$$

Regularizers

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

Generally, we don't want huge weights
If weights are large, a small change in a feature can result in a large change in the prediction

Also gives too much weight to any one feature

Might also prefer weights of 0 for features that aren't useful
How do we encourage small weights? or penalize large weights?

Common regularizers
sum of the weights $\quad r(w, b)=\sum_{w_{j}}\left|w_{j}\right|$
sum of the squared weights $\quad r(w, b)=\sqrt{\sum_{w_{j}}\left|w_{j}\right|^{2}}$
What's the difference between these?

Common regularizers
sum of the weights $\quad r(w, b)=\sum_{w_{j}}\left\|w_{j}\right\|$
sum of the squared weights $\quad r(w, b)=\sqrt{\sum_{w_{j}}\left\|w_{j}\right\|^{2}}$
Squared weights penalizes large values more Sum of weights will penalize small values more

p-norm
sum of the weights (1-norm) $r(w, b)=\sum_{w_{j}}\left\|w_{j}\right\|$ $\begin{array}{r} \text { sum of the squared weights } \\ \text { (2-norm) } \end{array} \quad r(w, b)=\sqrt{\sum_{w_{j}}\left\|w_{j}\right\|^{2}}$
$\mathrm{p} \text {-norm } \quad r(w, b)=\sqrt[p]{\sum_{w_{j}}\left\|w_{j}\right\|^{p}}=\\|w\\|^{p}$ Smaller values of $p(p<2)$ encourage sparser vectors Larger values of p discourage large weights more

Adding convex functions

Claim: If f and g are convex functions then so is the function $z=f+g$

Prove:

$$
z\left(t x_{1}+(1-t) x_{2}\right) \leq t z\left(x_{1}\right)+(1-t) z\left(x_{2}\right) \quad \forall 0<t<1
$$

Mathematically, f is convex if for all $\mathrm{x}_{1}, \mathrm{x}_{2}$:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \quad \forall 0<t<1
$$

P -norms are convex
$r(w, b)=\sqrt[p]{\sum_{w_{j}}\left\|w_{j}\right\|^{p}}=\\|w\\|^{p}$
p -norms are convex for $\mathrm{p}>=1$

Minimizing with a regularizer

We know how to solve convex minimization problems using gradient descent:
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)$

If we can ensure that the loss + regularizer is convex then we could still use gradient descent:
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda$ regularizer (w)
convex as long as both loss and regularizer are convex

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\|w\|^{2}
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\|w\|^{2} \quad \begin{aligned}
& \text { Find } w \text { and } \mathrm{b} \\
& \text { that minimize }
\end{aligned}
$$

Gradient descent

\square pick a starting point (w)
\square repeat until loss doesn't decrease in all dimensions:

- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$
w_{i}=w_{i}-\eta \frac{d}{d w_{i}}(\operatorname{loss}(w)+\text { regularizer }(w, b))
$$

$w_{j}=w_{j}+\eta \sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)-\eta \lambda w_{j}$

The update

constant: how far from wrong
If w_{i} is negative, increases w_{i}
moves $w_{\text {i }}$ towards 0
—

L1 regularization
$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)-\eta \lambda \operatorname{sign}\left(w_{j}\right)$

constant: how far from wrong

What effect does the regularizer have?

Regularizers summarized

L1 is popular because it tends to result in sparse solutions (i.e. lots of zero weights)

However, it is not differentiable, so it only works for gradient descent solvers

L2 is also popular because for some loss functions, it can be solved directly (no gradient descent required, though often iterative solvers still)

Lp is less popular since they don't tend to shrink the weights enough

Regularization with p-norms

L1:
$w_{j}=w_{j}+\eta\left(\right.$ loss_correction $\left.-\lambda \operatorname{sign}\left(w_{j}\right)\right)$
L2:
$w_{j}=w_{j}+\eta\left(\right.$ loss $_{-}$correction $\left.-\lambda w_{j}\right)$
Lp:
$w_{j}=w_{j}+\eta\left(\right.$ loss_correction $\left.-\lambda c w_{j}^{p-1}\right)$

How do higher order norms affect the weights?

The other loss functions

Without regularization, the generic update is:

$$
w_{j}=w_{j}+\eta y_{i} x_{i j} c
$$

where

$$
\begin{array}{ll}
c=\exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) & \\
\text { exponential } \\
c=1\left[y y^{\prime}<1\right] &
\end{array}
$$

$w_{j}=w_{j}+\eta\left(y_{i}-\left(w \cdot x_{i}+b\right) x_{i j}\right) \quad$ squared error

Common names

(Ordinary) Least squares: squared loss
Ridge regression: squared loss with L2 regularization Lasso regression: squared loss with L1 regularization

Elastic regression: squared loss with L1 AND L2 regularization

Logistic regression: logistic loss

