
CS150 - Assignment 9

Weather or not...

Due: Wednesday Nov. 14, at the beginning of class

An important component of many scientific applications is data collection and data analysis. For
this lab, we’ll be looking at an example data collection application that collects weather data from
the web and aggregates it into a data file. In addition, we’ll also make a nice script that you takes
a zip code as a command-line parameter and will give you the current temperature.

A few disclaimers:

1. As I mentioned in the class video lecture, when dealing with a program like this that contacts
an external server, you need to be respectful of that external resource. For testing purposes,
I have put up a version of the web page you will be extracting the temperature from on
our department web server. You should use this test web page until you have your program
working. Even when you have your program working and change over to the external web
address, please avoid making too many repeated calls.

1



2. If you wanted to write a program like we’re writing below for a real application, you would
not “scrape” the web page for the content you needed. Instead, many companies offer what
is called “API” access (application programming interface) to their data. This would be a
module you would download and use and it would give you the data. We’re only doing it
through scraping for educational purposes. If you want to actually do it the right way at
some point, please come talk to me.

1 Part 1: Getting the weather

For the first part of this lab, you are to write a program that reads the current weather from the web
for a zip code entered by the user. I’ve broken the description of this program into two parts: the
specification of what is required, and my suggestion about how to proceed on the implementation.
Make sure to read both sections before starting!

1.1 Specifications

Write a program called weather reader.py that has the following characteristics:

• Importing the module does nothing besides import any functions/variables that are defined
in your module.

• Your program should be able to be run from the command-line and take a single argument,
which is the zip code:

– If your program is run with too few or two many arguments, it should print out the
usage:

dkauchak$ python weather_reader.py

weather_reader.py <zip_code>

– If it is run with the correct number of arguments (one) you should treat it as a zip code
(you can assume it’s correct) and the program should print out the current temperature
at tht zip code

dkauchak$ python weather_reader.py 05753

59

• Your module must contain a function called get temperature that takes a zip code as a
parameter and returns the temperature at that zip code. For now, this version will be
ignoring the zip code and extracting the temperature from our test web page.

1.2 Implementation

At:

2



http://www.cs.middlebury.edu/~dkauchak/classes/cs150/assignments/assign9/weather_example.html

I have included a snapshot of a query from weather.com. For now, your program should only use
this page. If you open up this web page you’ll see it’s the weather for Middlebury. To get our
weather we’re going to be extracting the weather from the html of this page.

You may implement this module however you like as long as it meets the specifications above,
however, here is one suggested approach to implementing it:

1. Write the part of the program that checks to see if this program is being run vs. imported,
checks the number of program parameters and prints the usage accordingly.

2. Write some code that opens the web page above and reads through it a line at a time (when
I say “code” I mean some statements that may be stand-alone or may be in one or more
functions).

3. Once you have this working, you now need to actually find the temperature in the web page.
Go to the web page above and view the source. You’ll see there is a surprising amount of
text to generate this one page (13,908 lines to be exact).

The fortunate thing is that we just need one small piece of information, the current temper-
ature. In the source file search for the following phrase (using “find” under the edit menu):

"temperature-fahrenheit">

You’ll notice that immediately following this string, is the temperature (it actually occurs
twice in the html file).

Modify your code to find the line that contains this string. You can print it out just to make
sure you’ve got the right line.

4. Once you have the right line with the temperature in it, you’ll need to extract the actual
temperature number. Put this all together to write the get temperature function. Recall
that it will take a zip code as a parameter. For now it will just ignore that parameter and
always get the temperature data from the above web page, but go ahead an put the parameter
in anyway.

5. Finish up your program so that when you run it with the correct number of arguments it
prints out the temperature.

You should now be able to run your program from the command-line with a zip code and it will
give you a temperature (pretty cool!). Right now, it should always give you 34, however, it will
just be a small change to have it do the real thing. We’ll get to that soon...

3



2 Part 2: Aggregating the weather

We now have a program that we can run and it gives us the temperature and we have a module
that we could import and call the get temperature function to get the current temperature with
a zip code. For the second part of this lab, we’re going to write another program (i.e. in a different
.py file) that can be run regularly over time to build up a file with aggregated temperature data
over time.

Your program will be run with two command-line arguments, the name of a file and a zip code.
The file will contain multiple entries collected over time. Each line in the file will consist of a date,
an hour of the day and the temperature at that hour. For example, here is a short snippet of an
example file:

11-8-2012 14 65

11-8-2012 15 66

11-8-2012 16 70

11-8-2012 17 68

11-8-2012 18 59

Each time you run the program it will add at most one line to this file. So the file above would
have been generated with at least five calls to the program (over 5 different hours).

We’re setting the problem up this way since it is generally straightforward to get a program to run
at some fixed interval. You won’t be doing that for this lab, but I’m happy to talk to you offline
about how that would work.

As with the first part, I’ve broken the description of this program into two parts, the specification
and the implementation.

2.1 Specifications

Write a program called weather aggregator.py that has the following characteristics:

4



• Importing the module does nothing besides import any functions/variables that are defined
in your module.

• Your program should be able to be run from the command-line and take two arguments, the
first a filename and the second a zip code

• If the program is run with more or less command-line arguments it should print out the usage

dkauchak$ python weather_aggregator.py

weather_aggregator.py <file> <zip_code>

• If the program is run with two arguments:

– The program should first check to make sure that there isn’t already an entry in the file
for the current date and hour. If there is, the program should do nothing. This means
that running the program repeatedly in a row will not alter the file after the first time
when the current temperature is added for the current hour.

– If there is not an entry in the file for the current date and hour, the program should use
the weather reader module to get the current temperature and add an entry to the file
at the end with the appropriate formatting (i.e. date, then hour, then temperature all
separated by tabs).

2.2 Implementation

Here is one approach to implementing this program:

1. Write the part of the program that checks to see if this program is being run vs. imported,
checks the number of program parameters and prints the usage accordingly.

2. Write some code to check whether the file has an entry for a given date and time. For testing
purposes, it will likely be useful to create a version of the aggregate file manually (e.g. in
Wing or another text editor).

3. Write some code that gets the current date and hour and checks to see if it’s in the file. Again,
just modify the file by hand to test this.

4. Finally, put this together so that you check to see if the current date is in the file already, if
it’s not, use your weather reader module to get the temperature and append it on to the
end of the file. When writing this file, you may either rewrite the entire thing from scratch
each time (in that case you’d open the file with “w”) or you can just append the one new
entry (in that case you’d open the file with “a”). Don’t forget to close your files after you
write out the data.

5. Add any finishing touches to the program to make sure it runs appropriately. When you run
it, you won’t see any output, but the file passed in may change.

5



NOTE: If the file doesn’t exist at all and you call your program, you may get an error. To get
around this, just create a blank text file with nothing in it before you run your program for the
first time.

3 The real deal

http://blog.anarchius.org/2011/01/weathercom-rage-comic.html

So far, all of your testing should have been done on the copy on the computer science web server
using the url above, always giving you the same temperature. When you’re confident that you have
everything working you can go back and change your weather reader module to use the real web
page.

For a given zip code, the url should consist of

http://www.weather.com/weather/right-now/

with the zip code appended on to the end. For example, if we were to query Middlebury’s weather,
the url would be:

http://www.weather.com/weather/right-now/05753

Change your get temperature function in the weather reader module to generate an appropriate
url based on the zip code passed in and then use this url to get the temperature.

You should now be able to query the current weather based on the zip code entered:

6



dkauchak$ python weather_reader.py 05753

67

dkauchak$ python weather_reader.py 92037

56

dkauchak$ python weather_reader.py 84109

24

Again, please try not to run this program too many times, but do play with it some. You should
be able to run your weather reader.py program with a zip code and it will give you the current
temperature and your weather aggregator.py should now aggregate the real values.

4 Extra credit

You may earn up to 2 points of extra credit on this assignment. Below are some ideas, but you
may incorporate your own if you’d like. Make sure to document your extra credit additions in
comments at the top of the file.

• Check to make sure that the user enters a valid zip code (i.e. 5 digits)

• Modify your weather aggregator.py program so that it will run the first time even if the
file doesn’t already exist.

• Also include the zip code in the aggregated file and add data to the file based on whether an
entry for that date, time and zip code do not exist in the file.

5 When you’re done

Make sure that your program is properly commented:

• You should have a docstring comment for each module at the top of the file

• You should have comments after the module doc string stating your name, course (including
section number), assignment number and the date.

• Each function should have an appropriate docstring

• Other miscellaneous comments to make things clear

In addition, make sure that you’ve used good style

Submission procedure

7



For this assignment, you will have two .py files to submit. To submit multiple files, create a
directory with your name followed by the lab number. For example, my folder would be called
davidkauchak9 (but use your name! ).

Put your two .py files inside this directory and the create a .zip file from this directory. On the
Macs, right-click on the directory and select “Compress...”. If you’re working on Windows, right-
click on the file and select “Send to” then select “Compressed (zipped) Folder” (or if you don’t have
this option, use Winzip (http://www.winzip.com/). You will then see a file with a .zip extension
be created.

Submit this .zip file digitally at the usual location.

Grading

points

weather reader.py

run vs. import 1
prints usage with incorrect number of arguments 2
runs correctly with zip code entered 2
get temperature 5

weather aggregatore.py

run vs. import 1
prints usage with incorrect number of arguments 2
data and hour formatted correctly in file 1
appends temp to end of file 3
doesn’t add repeated data 3

Comments, style 5

extra credit 2

total 25 (+2)

8


